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Abstract

At the interface of neuroscience and computer science,
a new method of analysis has evolved. The idea of reading
out mental activity from neuronal measurements has led to
increasingly impressive feats of mind-reading. What sounds
like science fiction is well-positioned to become a major tool
in future brain research.

1. Understanding the brain
The mechanisms by which the brain makes sense of the

world rely on computational abilities far beyond any human
piece of engineering. It has therefore been a fundamen-
tal goal in neuroscience to understand just how our cen-
tral nervous system analyses sensory inputs, forms an in-
ternal cognitive state, and produces behavioural outputs. In
recent decades, an overwhelming amount of evidence has
accumulated that supports the early hypothesis that popula-
tions of nerve cells, or neurons, provide the basic functional
processing unit of the brain. Neurons drive one another’s
activity in highly interconnected groups that assemble and
disperse on a millisecond scale, and the dynamics of these
ensembles of cells are believed to give rise to the cognitive
abilities of the brain. With more and more experimental and
theoretical results coming in, many scientists believe that
we may eventually solve the neural puzzle—and achieve a
detailed understanding of the brain.

But what exactly do we mean by an ‘understanding of
the brain?’ Can we be said to ‘understand’ the brain once
we have come up with a wiring diagram of its 100 billion
neurons? Do we ‘understand’ it once we have written down
the differential equations governing the dynamics of its 100
trillion synapses? Such approaches must inevitably fail. A
more fruitful way of thinking about the question is: can
we demonstrate how the inner workings of the brain relate
to cognitive abilities? In other words: can we establish a

mapping between structure and function, between brain and
mind?

The idea of reading out, or decoding, mental activity
from neuronal measurements has been driving the forma-
tion of increasingly multidisciplinary research groups [8].
However, as neuroscientists and computer scientists team
up, two fundamental challenges have become apparent.
First, there are currently no methods available to record
the activity of a larger number of individual nerve cells in
an awake human being, let alone to obtain high-resolution
whole-brain footage of neural activity. Second, the brain
displays immense natural variability in structure, connec-
tivity, and dynamics. Your brain is very different from your
friends, and it is very different from itself as it was just a
few minutes ago. Yet, more recently, increasingly marked
advances in decoding have been achieved.

“We show that [our] models make it possible to identify,
from a large set of completely novel natural images, which
specific image was seen by an observer,” Kendrick Kay and
colleagues lately reported in the journal Nature [9]. Their
ability to tell, by scanning someones brain, which picture
they were looking at, is the result of a study carried out at
the University of California, Berkeley. It is about decoding
information from the visual system—the part of the brain
that processes what we are currently looking at. And being
able to tell which image was seen out of a fixed set of im-
ages is not the end of the story: “Our results suggest that
it may soon be possible to reconstruct a picture of a per-
sons visual experience from measurements of brain activity
alone.” [9]

The idea of engineering a general brain-reading device
has long been stimulating researchers’ imaginations. Psy-
chologists claim it could be used to investigate perception
and consciousness [6, 7, 15]. Neurologists say it could be
used to construct brain-computer interfaces for paralyzed
patients [18]. Lawyers wonder whether it could be used for
lie detection [1]. As basic research increasingly elucidates



the neural mechanisms underlying cognition, we may begin
to use this knowledge in reverse: to decipher a cognitive
process from its neural correlates.

Decoding relies on two techniques. First, neuroimag-
ing has made it possible to obtain correlates of the summed
activity of populations of neurons across the whole human
brain [16]. Second, the theory of machine learning has
given rise to powerful algorithms that are able to recog-
nize patterns in measured brain activity, and associate them
with mental states [13]. The combination of these two fields
comes with many challenges, and results require extremely
careful interpretation. But it opens up a treasury of excit-
ing applications, and never before have we been so close to
their realization.

2. What is the brain thinking about?
Measuring neural activity using fMRI

High-level phenomena such as memory or consciousness
are difficult to localize: they emerge from the distributed
activity of many parts of the brain. By contrast, more basic
functional building blocks have been pinpointed to particu-
lar cortical areas. Sensory inputs, for example, are known
to arrive in dedicated hierarchical structures of the brain in-
cluding the visual cortex (seeing), the auditory cortex (hear-
ing), and the somatosensory cortex (touching). Similarly,
behavioural outputs are passed on to the spinal cord by an
area referred to as the motor cortex. In between are associ-
ation areas that effectively allow any sensory input to trig-
ger any motor output. One technology in particular has fu-
elled these insights: functional magnetic resonance imaging
(fMRI) makes it possible to record neural activity from the
brain of a participant who is happily performing some kind
of cognitive task.

Neural activity is expressed in terms of increased sig-
nalling between nerve cells, which, in turn, leads to an in-
creased demand in oxygen. As a result, the level of blood
oxygenation rises. The precise details of the underlying cas-
cade of biochemical events are not fully understood, but the
effect is of immense use: an MRI scanner is able to pick up
subtle changes in blood oxygenation as direct correlates of
neural activation [16]. How can we employ this technology
to infer something interesting about the brain?

In a typical fMRI experiment, a participant lies in a large
magnetic coil and is asked to watch a screen, listen to a
sound, press some buttons, navigate in a 3D maze, or per-
form any other kind of task. In the same way as a digital
camera divides up an image into a grid of small pixels, the
MRI scanner divides up the brain into voxels, small cubes
with a volume of, e.g., 3× 3× 3 mm3. A complete record-
ing then contains a time series of neural activity from each
voxel throughout the duration of the experiment.

In a cognitive neuroscience setting, for example, partic-

ipants might be asked to play a gambling game in which
they have to place a bet on either of two cards, and, by trial
and error, adopt a successful strategy to maximize their win-
nings. Given their recorded neural activity, we might now
begin by looking for those regions that display systematic
differences in activity between periods when participants
are at rest and periods when they are making a decision.
Technically, we predict what the signal in a voxel should
look like if the nerve cells in that voxel were concerned with
decision making: low activity during rest, and high activity
just before a decision. As a result of our analysis we may
find various areas in the brain whose activity appears to fol-
low our prediction: low blood oxygenation during rest, and
high oxygenation just before a decision. We might then con-
clude that these regions are involved in the mental process
of making a decision.

There are many caveats associated with this kind of anal-
ysis and the interpretation of its results. Nevertheless, care-
ful experimental design and the use of converging evidence
have established fMRI as the method of choice for human
brain research.

3. Decoding mental activity

When trying to decode mental activity from neural
recordings, the conventional analysis described above is
modified in two ways. First, rather than predicting the time
course of neural activity from a design matrix, we aim to
predict parts of the design matrix from the time course of
neural activity [8]. Second, rather than considering all vox-
els independently, we aim to understand how patterns of
voxel activities jointly encode information. The first modi-
fication is important when the aim is prediction per se, that
is, in applications such as lie detection. The second mod-
ification is key when it comes to inference on structure-
function mappings, that is, in basic research. In either case,
we take a snapshot of the activity measured simultaneously
at many locations in the brain, and map it onto a particu-
lar mental state. These states are often defined in terms of
discrete classes, which, in the example above, could be la-
belled ‘rest’ and ‘decide.’

In this way, decoding can be viewed as classification,
a key problem studied by a branch of computer science
known as machine learning [13]. How does it work?

The learning methodology. It takes no more than a few
years until children can easily recognize digits and letters,
or detect a single female face in a series of male ones. For
computers, however, tasks of pattern recognition are among
the most difficult ones. It is unknown how to teach a ma-
chine to flawlessly recognize faces or separate personal e-
mails from unwanted spam because no mathematical model
of the problem is available, or its implementation is compu-
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Figure 1. The classification pipeline. (a) An MRI scanner splits up the brain into thousands of small three-dimensional voxels. Here they
are illustrated by a (two-dimensional) grid. The scanner records neural activity within each voxel while participants are being engaged in
different cognitive tasks. For example, they might be presented, one after another, with many different images of chairs and shoes. (b)
The learning algorithm is trained on the neural activity that was recorded while participants were looking at chairs or shoes, respectively.
Impossible to pick up by eyesight, the algorithm can find subtle, yet systematic, differences in brain activity between the two classes. (c)
As a result of the learning phase, a classifier can tell apart the two classes of mental perception. The example illustrates a case where
input data are two-dimensional, containing activity from just two voxels. Each voxel on its own is not sufficiently informative to allow for
accurate classification, but together they allow for reliable separation. In a real setting, feature spaces of hundreds of dimensions might be
considered. (Fig. 1b, c adapted from [8].)

tationally too expensive [10, 20]. In most instances, the hu-
man brain outperforms all algorithms devised so far. What
is its secret?

When the brain learns to tell apart the 26 letters in the al-
phabet, it is not given a formal description of the morphol-
ogy of each and every letter. Instead, it learns by example.
This idea has been taken on by statistical learning theory,
where it is referred to as the learning methodology. It is the
idea that a computer should learn by inductive inference,
that it should learn from examples, rather than being pro-
grammed to solve a particular problem explicitly. This is
precisely what we can make use of when aiming to decode
a mental state from neural activity.

Classification and cross-validation. From a statistical
learning point of view, the goal of mind reading is to learn
about input-output pairings, where the input domain is a
high-dimensional feature space of neural activity, and the
output range is a set of discrete classes of mental activity.
In principle, these classes could be about any type of mea-
surement that can be tied to an individual example of data:
which type of stimulus a participant saw; what action they
chose; what the outcome of the trial was. To do this, we
need training data: a set of examples of neuronal record-
ings for which we know what the respective cognitive states
were. A learning algorithm then attempts to find a system-
atic relationship between the training examples and their re-
spective classes. But crucially, in order to assess whether

the algorithm has in fact picked up a robust relationship,
we need to run it on entirely separate test data: previously
unseen examples for which, again, we know the respective
classes but do not allow the algorithm to see them. Think
of the purpose of an exam: the classifier has been taught
many individual facts during the training phase; now we
should assess whether it is not only able to repeat what it
has been taught but has actually understood the underly-
ing principles—by asking it to apply its knowledge to new
cases. The percentage of correctly classified test examples
is what we can then report as the accuracy of our mind-
reading device (see Figure 1).

In the gambling game described above, for example, we
might try and decode the choice participants were about to
make on a given trial: were they going to pick the blue card
or the green card? To the classifier, an input example is a
vector containing the neural activity from each voxel in the
brain, recorded just before the decision of a particular trial.
The two output classes are ‘blue’ and ‘green.’ If a partici-
pant has played the game 100 times, we could, for instance,
train the classifier on 80 trials and test it on the remaining
20 ones. If the classifier correctly predicts whether the par-
ticipant chose the blue or the green card in 15 cases, we
can report an accuracy of 15/20 = 75%, corresponding to
a significance level of p < .006. In other words, it is very
unlikely that the classifier was merely guessing—in which
case we would expect about 10 correct predictions.

The fact that the dataset must be split up into separate



training and test sets raises an interesting question: how
much of the data should be used for training the classifier,
and how much should be kept separate to test it? On the one
hand, the larger the training set, the more can the classifier
learn about what neural activity tends to look like in each
of the classes. On the other hand, the larger the test set, the
better our estimate of the actual accuracy. In particular, it
may easily happen that the classifier overfits by learning an
extremely complex relationship between neural activations
and cognitive class which generalizes poorly to unseen test
examples. Fortunately, there is a clever way of dealing with
this problem: a method termed cross-validation that allows
us to present the classifier with as much training data as
possible, yet obtain a reliable estimate of its generalization
ability.

To begin with, we train our classifier on all trials but
one—that is, the classifier gets to see 99 examples of neural
activity (trials 1 through 99) and their corresponding class:
‘blue’ or ‘green.’ We then test the classifier on the single re-
maining trial that was held out (trial 100), giving us either a
correct or an incorrect prediction. And here comes the trick:
we can re-run the whole procedure of training and testing
while, this time, we are testing on the penultimate trial (trial
99) and training on the 99 other ones (trials 1 through 98
and trial 100). Repeating this 100 times, each time work-
ing with a different split of training vs. test data, yields 100
predictions which we can average to get a good estimate of
the true accuracy of the classifier. For example, if the classi-
fier has predicted correctly in 64 out of 100 cross-validation
folds, we can report an accuracy of 64%. This is slightly
worse than the estimated 75% from above. However, it is
more accurate and, in fact, corresponds to a better signifi-
cance level of p < .002. In other words, we can be even
more confident that the classifier has truly found some re-
lationship between neural activity and chosen card, and we
can reject the null hypothesis of it just operating at chance.

Feature selection. One issue we have only implicitly
dealt with so far is the problem of feature selection. It turns
out to be crucial in many machine-learning applications [5],
and it holds particular challenges in a neuroimaging set-
ting [2, 13, 18, 19]. A typical dataset may contain a time
series of acquired volumes of, say, 64 × 64 × 45 voxels
required to cover the entire cerebral cortex. If we take a
snapshot of the neural activity within each voxel as input to
the classifier, we end up with a vector of 184,320 values, or
features. Each example could be represented as a point in a
184,320-dimensional cube—which usually makes it impos-
sible for a classifier to learn which particular combinations
of features belong to which class. The high dimensionality
of the input space therefore needs to be reduced to a smaller
number of features presented to the learning algorithm. Ide-
ally, this allows the classifier to focus on a few informative

features and ignore the other ones [5].
If each feature represents the neural activity measured in

a particular voxel, then one way of selecting features is to
confine ourselves to certain regions of interest. For exam-
ple, we might hypothesize that participants who are about
to choose the blue card tend to actually look at the blue
card just before making their decision, and hence choose
voxels from the visual cortex as features. However, this
requires some prior knowledge and does not always allow
for a strong reduction in dimensionality. It may also defeat
the point of using the classifier to find out, rather than pre-
suppose, which parts of the brain contain information about
the participant’s decision [19]. One solution, among the
many skillful methods that have been proposed, is to choose
those voxels that allow for above-chance classification just
by themselves. Here is how it works: we consider each indi-
vidual voxel in turn and run a full cross-validation analysis
using only the neural activity of this particular voxel. The
resulting accuracy is viewed as this voxel’s score. Once we
have tested all voxels individually, their scores allow us to
select the best ones for the main analysis. In doing so, it is
important that feature selection only operates on the train-
ing set and never sees the test set. This finally sets the stage
for the key theme: how can we use a classifier?

4. Tackling new questions

Conventional fMRI analysis predicts neural activity in
individual voxels from a model that captures the expected
observations. Decoding, by contrast, predicts parts of the
model from entire patterns of neural activity measured si-
multaneously in many voxels. While conventional analysis
has proven very successful over the past 15 years, decoding
allows us to explore the brain from a new angle. While con-
ventional analysis typically treats each voxel in the brain
independently, decoding is a multivariate approach: it al-
lows for the identification of patterns emerging from whole
ensembles of voxels, it does not impose any constraints on
spatial contiguity, and it is less severely affected by the nat-
ural variability in people’s brains. Decoding is by no means
the only multivariate approach that has been applied to neu-
roimaging datasets [11, 12]—but it is the one that has at-
tracted most interest in recent years. It allows us to tackle
four key questions from a new perspective [18].

Whether, where, when, and how. First, the question of
pattern discrimination: does the recorded neural activity
carry information about a variable of interest? From the
point of view of pattern discrimination, a classifier is an
information-extraction device. It can be used for inference
on structure-function mappings in the brain, but may also
provide new methods for clinical diagnosis, brain-computer
interfaces, or lie detection (see Figure 2a).
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Figure 2. Applications of decoding analyses. (a) When asking whether we can decode a variable of interest from neural activity, we
need to compare our classifier’s performance with chance level. If the algorithm fails to extract information, its accuracy is expected not
to differ significantly from chance (left column); by contrast, a classifier performing above chance provides evidence for the presence of
information about the variable of interest (right column). (b) Having demonstrated the extraction of information, we can ask where in the
brain this information is encoded: by finding those voxels that drive the classifier’s success. (c) Within a given area, we can examine when
patterns become sufficiently distinct to allow for classification. For example, we might find that a brain area contains information about a
participant’s choice before they indicate this choice by pressing a button. (d) Characterizing how an abstract stimulus translates into neural
activity is the most sophisticated type of analysis. The example shown here illustrates how a word can be decoded [13]. For a given noun
(e.g., ‘celery’), it is first determined how much this noun generally co-occurs with a number of basic activities (e.g., ‘hear’ or ‘taste’ or
‘run’). A predictive model then describes how every voxel in the brain appears to be tuned to these activities. When a new word from a
dictionary is presented to the participant, the recorded activity can be compared to the predicted activity for all words in the dictionary. The
classifier finally chooses the word that matches the recording best. (Fig. 2d adapted from [13].)

Second, the question of spatial pattern localization:
where in the brain is class information encoded? Once
we have established that neural activity carries information
about a variable of interest, we can investigate which vox-
els contribute most strongly to the classifier’s success (see
Figure 2b).

Third, the question of temporal pattern localization:

when does information take shape in, or become available
to, a certain brain area? In the decision-making experi-
ment described earlier, for example, participants are typi-
cally asked to indicate their choice by pressing a button.
We may now ask how early we can predict their choice. To
do this, we would re-run the classifier analysis many times,
each time granting the classifier access to another second of



input data, up to the point in time when the decision was
finally made. We could then report how early the classi-
fier began to perform significantly above chance level (see
Figure 2c).

Fourth, the question of pattern characterization: how is
information encoded in the brain? In order to answer this
most intricate of all decoding questions, researchers have
begun to take the design of classification analyses to yet an-
other level [4]. Rather than training an algorithm to distin-
guish between neural patterns of, say, two different classes,
we can try and map neural activity onto the correct class out
of dozens if not hundreds of classes, where the classifier has
only seen training examples from a small number of classes.
To achieve this, the classifier, during the training phase,
constructs a model for each voxel known to contribute to
overall prediction accuracy. The model describes what ab-
stract features of a stimulus each particular voxel is tuned to.
For a potentially large set of test stimuli, the classifier can
then compute the expected activation in each voxel if the
brain was exposed to that particular stimulus. Given neu-
ral activity recorded while one of these stimuli was actually
presented to a participant, the classifier chooses the stimu-
lus whose predicted pattern of neural activity most closely
matches the observed pattern (see Figure 2d).

A study by Tom Mitchell and colleagues of Carnegie
Mellon University, published in Science in May 2008, il-
lustrates this idea: “We present a computational model that
predicts the [. . . ] neural activation associated with words
for which fMRI data are not yet available.” In other words,
given an arbitrary word presented to a participant in an MRI
scanner, the algorithm, out of a large corpus of nouns, finds
the word that was most probably being presented [14]. This
brings us back to the findings by Kendrick Kay’s group,
mentioned at the beginning, who used precisely the same
idea to engineer a decoding algorithm for the visual sys-
tem: given an image shown to a participant, their algorithm
would find, out of a large set of images, the one image that
was most likely being shown [9]. Both studies illustrate the
idea of prediction for the purpose of inference: classifica-
tion is not used for its own sake, but allows for new insights
about the link between brain and mind [3].

What the future holds. Having evolved at the interface
of neuroscience and computer science, decoding mental
states from neural activity is well-positioned to become a
key tool in brain research [8, 17]. The spatial and temporal
resolution of imaging techniques such as fMRI is limited,
and will remain so for the foreseeable future. Learning al-
gorithms currently lack the robustness they need for wide
applicability, and no principled guidelines for solving the
problem of feature selection have been agreed on yet. Nev-
ertheless, skilful analyses have already led to a whole range
of impressive findings about information processing in the

brain. The field is not only likely to continue doing so in the
future; it also demonstrates how multidisciplinary research
can give rise to insights each discipline on its own would
not have achieved.
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