
5 Example: decoding at-risk mental states

FMRI data were acquired from 13 at-risk mental state (ARMS) patients and 13
healthy controls. We considered a large set of dynamic causal models with
different patterns of temporo-prefrontal connectivity. While Bayesian model
selection failed to discriminate between patients and controls, model-based
decoding provided strong prediction performance (b) and revealed which
functional connections supported correct diagnoses (c).

3 Example: decoding a sensory stimulus

Electrophysiological recordings were acquired from rat barrel cortex during a
simple whisker-stimulation experiment (a). While both conventional and model-
based decoding succeeded in predicting which whisker had been stimulated on
a given trial (b), the model-based scheme also revealed which biophysical
parameters provided most discriminative power.

1 Introduction

How much information can we decode from measurements of neural activity?
Conventional approaches face two problems: feature spaces are high-
dimensional; and results are difficult to interpret. Here, we propose a model-
based decoding approach that addresses both challenges from a new angle.

Step 1: invert a dynamic causal model (DCM) of fMRI, EEG, MEG, or
electrophysiological data in a trial-by-trial (or subject-by-subject)
fashion;
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2 Conventional vs. model-based decoding

fashion;

Step 2: train a classifier on a strongly reduced feature space derived from the
trial-wise (or subject-wise) model parameter estimates;

Step 3: test the classifier on new data, or reconstruct the separating
hyperplane to assess which features were jointly informative.
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4 Example: decoding auditory mismatch

Electrophsyiological recordings were acquired from 2 electrodes in rat auditory
cortex during an auditory-mismatch paradigm (a). In decoding which tone had
been played on a given trial, model-based decoding performed significantly

6 Discussion and conclusions

Decoding with model-based feature construction offers three advantages over
conventional decoding algorithms:

• The scheme provides biologically informed dimensionality reduction. This
renders generic heuristics for feature selection obsolete.
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been played on a given trial, model-based decoding performed significantly
above chance in two out of three cases (b) and revealed a consistent pattern of
influential parameters across both animals (c).

• Decoding results can be interpreted in the context of a mechanistic model, by
assessing which set of biophysical parameters underlie prediction
performance. Such a mechanistic interpretation might prove particularly
useful in clinical studies.

• Competing models can be compared to one another by evaluating how much
information is preserved by each of them. The scheme therefore allows for
decoding even when discriminability is not afforded by differences in model
structure but only by patterns of parameter estimates under the same model
structure; and it enables structural model selection in cases where Bayesian
model selection is not applicable.

(a)  Experimental paradigm (b)  Decoding accuracy

sound-proof chamber

speaker 1 speaker 2

antennarecording cage

standards

deviant

prestimulus 
period

90 ms 250 ms 210 ms

poststimulus 
period

inter-trial
interval peristimulus 

time [ms]

tone

50 ms

recording window

conventional

model-based

cl
a

ss
if

ic
a

ti
o

n
 a

cc
u

ra
cy

animal  B1 B2 B3

B1 B2

synaptic time constant (region 1)
synaptic time constant (region 2)

receptor densities (region 1)
receptor densities (region 2)
synaptic sigmoid dispersion
synaptic sigmoid threshold

forward connection region 2 ÿ region 1
backward connection region 1 ÿ region 2

input strength (to population 2)
extrinsic backward propagation delay

extrinsic forward propagation delay
stimulus onset

stimulus dispersion

animal  B1 B2

(c)  Feature weights

• performance evaluation

Acknolwedgements
This study was funded by the NEUROCHOICE project of SystemsX.ch (FH, BW, KES), the University Research Priority Program ‘Foundations of Human Social 
Behaviour’ at the University of Zurich (KHB, KES), the NCCR ‘Neural Plasticity’ (KES), and the Max Planck Society (FJ, MT).

In order to allow for cross-comparison of decoding methods, we have made our data available online at http://people.inf.ethz.ch/bkay/downloads.
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