



## Kay H Brodersen<sup>1,2</sup> · Chia-shu Lin<sup>3</sup> · Ekaterina I Lomakina<sup>1,2</sup> · Klaas E Stephan<sup>2,4</sup> · Katja Wiech<sup>3,5,6</sup> · Irene Tracey<sup>3,5</sup>

<sup>1</sup> Department of Computer Science, ETH Zurich, Switzerland <sup>2</sup> Laboratory for Social and Neural Systems Research, Department of Clinical Neurology, John Radcliffe Hospital, University of Oxford, United Kingdom <sup>4</sup> Wellcome Trust Centre for Neuroimaging, University College London, United Kingdom <sup>5</sup> Nuffield Department of Anaesthetics, John Radcliffe Hospital, University of Cxford, United Kingdom <sup>6</sup> Research Group Health Psychology, Department of Psychology, University of Leuven, Belgium

### Summary

- affective aspects.
- complementary contributions.
- experience of pain than any of its constituents alone.

- perceptual decision-making task [1].
- whether the stimulus had been perceived as painful or not.



- test on voxel weights [3].

# Multivariate decoding of perceptual decisions about pain



# 3 Is it possible to decode the perception





## 5 Which spatial scale affords the best explanation of pain perception?

We investigated the predictive capacity of brain activity on different spatial scales: individual voxels, anatomical regions, combinations of regions, and whole-brain data.



We obtained significant increases in decoding accuracy until a small number of pain-related regions had been included. After this, further information gains were counterbalanced by the increasing amount of noise.

### 6 Discussion and conclusions

- sensory-discriminatory functions (SI).
- simultaneous activations in multiple regions.
- subjects and (ii) in the context of longer-lasting clinical pain.

Acknowledgements

Research, Belgium (KW).

References

- pp.16324-16331
- 49(3), pp.2178-2189.
- 3. Lomakina, E.I. et al. (in preparation)

• Our results show that the subjective experience of pain can be decoded from trial-wise fMRI data, even in the absence of physical stimulus alterations. The strongest predictions are produced when considering both regions involved in affective-cognitive functions (anterior insula, OFC) and regions involved in

• Pain perception can be decoded most accurately when considering multiple anatomical regions. This suggests that the neural representation of pain is genuinely multivariate; it can only be understood by carefully considering

• Our results open up the possibility of applying the same techniques (i) across

1. Wiech, K. et al., 2010. Anterior insula integrates information about salience into perceptual decisions about pain. *Journal of Neuroscience*, 30(48), 2. Marquand, A. et al., 2010. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. *NeuroImage*,

This research was supported by the Medical Research Council of Great Britain and Northern Ireland (FMRIB Centre) and the Fund for Scientific