
5 Induction of a generative score space 

• In generative embedding, a DCM transforms the data from a high-
dimensional voxel-based feature space into a low-dimensional generative 
score space. 

• The generative score space may enable much better separability of patients 
and healthy controls, as shown below. 

1 Summary 

• Multivariate classification algorithms rely on decoding models to infer 
cognitive or clinical brain states from fMRI data [1]. Two major challenges for 
all approaches are: (i) the high data dimensionality in fMRI, and (ii) achieving 
mechanistic interpretability. 

• We address these issues by proposing a novel generative-embedding 
approach that incorporates neurobiologically interpretable generative 
models into discriminative classifiers [2]. 

• Using fMRI data from aphasic patients and healthy controls, we illustrate 
that our approach enables more accurate classification and deeper 
mechanistic insights than conventional methods. 

• Generative embedding may be particularly useful whenever: 

  the scientific question reduces to a classification or regression problem, 
  a generative model of the data is available, 
  model parameters can be interpreted mechanistically. 
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6 Conclusions 

• The first advantage of generative embedding over conventional methods is 
that it may provide more accurate predictions by exploiting discriminative 
information encoded in ‘hidden’ physiological quantities such as synaptic 
connection strengths. 

• The second advantage is that it affords mechanistic interpretability of clinical 
classifications. 

• We envisage that future applications of generative embedding may provide 
crucial advances in dissecting spectrum disorders into physiologically more 
well-defined subgroups. 
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2 Generative embedding for fMRI 

We introduce generative embedding for fMRI using a combination of dynamic 
causal models (DCM) and support vector machines (SVM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our procedure extends the literature on generative kernels [3] and on trial-by-
trial classification for electrophysiological recordings [4] to subject-by-subject 
classification of fMRI. 
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step 4 — 
interpretation 

𝑐 = sgn  𝛼𝑗
∗ 𝑘 𝑥𝑗 , 𝑥 + 𝑏

∗

𝑚

𝑗

 

𝑘ℳ:ℳΘ ×ℳΘ⟶ℝ 

𝑘:ℝ𝑑 × ℝ𝑑⟶ℝ 

ℳΘ⟶ℝ
𝑑 

𝑝(𝜃|𝑥,𝑚) 

𝒳 ⟶ℳΘ 

ℝ𝑑 

-10

0

10

-0.5

0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-10

0

10

-0.5

0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

g
en

era
tive 

em
b

ed
d

in
g

 

L.
H

G
 →

 L
.H

G
 

V
o

xe
l (

6
4

,-
24

,4
) 

m
m

 

L.MGB → L.MGB Voxel (-42,-26,10) mm 
Voxel (-56,-20,10) mm R.HG → L.HG 

controls 
patients 

Voxel-based feature space Generative score space 

Left | The three axes represent the peaks of those three 
clusters that showed the strongest discriminability 
between patients and controls, based on a searchlight 
classification analysis. 

Right | The three axes represent the three individually 
most discriminative parameters (two-tailed t-test) in 
the generative score space induced by a DCM of speech 
processing 

3 Clinical example: speech impairments 

We illustrate the utility of our approach by a clinical example in which we 
classify moderately aphasic patients and healthy controls [5] using a DCM of 
thalamo-temporal regions during speech processing [6]. 

Left | In order to construct a dynamic causal 
model (DCM) of speech processing, we 
examined neural activity in response to 
speech. The figure shows a simple ‘speech’ 
versus ‘no speech’ contrast. 

Right | In generative embedding, a high-dimensional 
activity pattern is transformed into a low-dimensional 
connectivity pattern. The figure shows a dynamic causal 
model (DCM) of speech processing whose subject-specific 
connection strengths served as features for classification. 

4 Prediction performance 

Generative embedding achieves a near-perfect balanced classification accuracy 
of 98%. Our approach significantly outperforms conventional activation-based 
and correlation-based methods. 

Generative embedding was compared to several conventional approaches.  Conventional activation-based methods: (a) anatomical 
feature selection, (c) contrast feature selection, (s) searchlight feature selection, (p) PCA-based dimensionality reduction  Conventional 
correlation-based methods: (m) region-means correlations, (e) eigenvariates correlations, (z) eigenvariates z-correlations  Generative 
embedding: (o) original full model, (f) implausible feedforward model, (l) left hemisphere only, (r) right hemisphere only. 
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The model that enables an accuracy of 98% views speech 
processing as an interplay between six key regions. 

auditory stimuli 

highly discriminative 
somewhat discriminative 
not discriminative 

L R 


