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Abstract
Multivariate time series can be modelled using differential equations that

describe how the components of an underlying dynamical system interact in
time. A challenging domain of application is neuroscience, where dynamic
causal models have been increasingly used to shed light on the mechanisms
behind multivariate time series of brain activity acquired in the healthy and
the diseased human brain. This thesis introduces an approach to translat-
ing such models into clinical applications which we refer to as generative
embedding. Our approach exploits the notion that a mechanistically in-
terpretable description of a system may provide more useful insights than
the observed time series themselves. Conceptually, we begin by develop-
ing a model-based classification approach that is based on the combination
of a generative model and a discriminative classifier. We show that this
approach may lead to significantly more accurate diagnostic classifications
and deeper mechanistic insights than previous schemes. Using a classi-
fier on hierarchical data, as we do here, requires us to revisit conventional
approaches to performance evaluation. We introduce novel Bayesian fixed-
effects and mixed-effects models for inference on classification performance
that correctly account for distinct sources of uncertainty to appropriately
constrain posterior inferences. We propose to replace conventional classifica-
tion accuracies by balanced accuracies whenever the data are not perfectly
balanced themselves. We demonstrate the properties of these models us-
ing stochastic approximate inference based on Markov chain Monte Carlo.
We then derive a computationally highly efficient deterministic variational
Bayes approximation. Complementary to its use in classification, genera-
tive embedding may enable the discovery of mechanistically interpretable
subgroups that were not known a priori. We develop a model-based clus-
tering approach which we use to dissect a group of patients diagnosed with
schizophrenia into subgroups with clinical validity. In summary, this thesis
explores generative embedding and variational Bayesian inference to estab-
lish the conceptual, statistical, and computational foundations for utilizing
model-based classification and clustering approaches in a clinical context.
We envisage that future applications of our approach will enable the formu-
lation of novel mechanistic hypotheses that decompose groups of patients
with similar symptoms into pathophysiologically distinct subgroups.
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Chapter 1

Introduction

Multivariate time series can be modelled using differential equations that
describe how the elements of an underlying dynamical system interact in
time. One novel, highly challenging, and increasingly promising domain
of application is clinical neuroscience, where dynamic models can be used
to describe physiological mechanisms underlying multivariate time series of
brain activity in the healthy and the diseased human brain.

This thesis introduces a novel approach to translating such models into
clinical applications which we refer to as generative embedding. Our ap-
proach exploits the notion that, in order to understand a system and ex-
tract useful information from it, a mechanistically interpretable description
may prove much more useful than the observed time series themselves. Our
approach is multivariate and thus allows us to utilize information jointly
encoded by multiple features of the system.

In brief, the central theme of this thesis is to (i) propose concrete im-
plementations of model-based classification and clustering on the basis of
generative embedding, (ii) develop a theory around the statistical evaluation
of the obtained classification algorithms, and (iii) demonstrate the utility of
the proposed approach in the context of functional neuroimaging data.

1.1 Statistical approach and applications
Recent years have seen a substantial increase in the use of functional neu-
roimaging for investigating healthy brain function and examining its patho-
physiological deviations. The most popular type of analysis is statistical

15
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context (cause or consequence) 

𝑋𝑡 ∈ ℝ𝑑 

BOLD signal 

𝑌𝑡 ∈ ℝ𝑣  

  condition 

        stimulus 

response 

   prediction error 

encoding model 

decoding model 

𝑔: 𝑋𝑡 → 𝑌𝑡 

ℎ: 𝑌𝑡 → 𝑋𝑡 

Figure 1.1: Encoding vs. decoding. An encoding model describes the conditional
density of brain activity given a set of contextual variables, such as sensory inputs,
behavioural responses, or states of a computational model of cognition. A decoding model
adopts the inverse view: it describes the conditional density of a contextual variable in
terms of brain activity. In order to establish the existence of a statistical relationship
between context and brain activity, the direction of inference is not important. Decoding
models, however, are more suitable when we aim to exploit such a relationship to afford
predictions about a clinical variable in an individual subject.

parametric mapping (SPM; Friston et al., 1995), a mass-univariate encod-
ing model of functional magnetic resonance imaging (fMRI) data in which
the statistical relationship between experimental variables and haemody-
namic measurements of neural activity is examined independently for every
voxel in the brain (Figure 1.1). One could use SPM, for example, to create
a map showing in which parts of the brain activity levels differ significantly
between patients and healthy controls.

While this approach has led to fundamental insights about functional
abnormalities in psychiatric and neurological disorders, its scope is lim-
ited in two ways. First, since univariate models are insensitive to spatially
distributed patterns of neural activity, they may fail to detect subtle, dis-
tributed differences between patients and healthy controls that are not ex-
pressed as local peaks or clusters of activity (Koutsouleris et al., 2009).
Second, while encoding models such as SPM are excellent for describing re-
gional differences in brain activity across clinical groups, they are less well
suited for clinical decision making, where the challenge is to predict the
disease state of an individual subject from measured brain activity (Fig-
ure 1.1).

An alternative approach is offered by multivariate decoding methods.
Unlike mass-univariate encoding models, these methods predict an experi-
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BOLD signal 

𝑌𝑡 ∈ ℝ𝑣 , v ≫ 1  

context 

𝑋𝑡 ∈ ℝ𝑑  
BOLD signal 

𝑌𝑡 ∈ ℝ 

context 

𝑋𝑡 ∈ ℝ𝑑  

a b 

Figure 1.2: Univariate vs. multivariate models I. (a) In neuroimaging, a model
that considers brain activity in an individual voxel is referred to as a univariate (or
univoxel) model, and a model that is applied separately to each voxel in turn as a mass-
univariate model. (b) A multivariate (or multivoxel) model, in contrast, considers several
or all voxels simultaneously. Since most models relate several independent variables to
one dependent variable, univariate models tend to come in the form encoding models,
whereas multivariate models are typically, though not always, decoding models.

mental variable (e.g., a trial-specific condition, or a subject-specific disease
state) from the activity pattern across voxels (Figures 1.2 and 1.3; see Nor-
man et al., 2006; Haynes and Rees, 2006; O’Toole et al., 2007; Friston et al.,
2008; Pereira et al., 2009, for reviews). The technique often rests upon the
application of algorithms for pattern classification to neuroimaging data.
A classifier is first trained on data from a set of subjects (or trials) with
known labels (e.g., disease state A vs. B). It is then tested on new subjects
that were not seen during training. Successful above-chance classification
performance provides evidence that information about a particular brain
state can indeed be decoded from the acquired data (see Fu et al., 2008;
Shen et al., 2010; Wang et al., 2010, for examples).1

Using multivariate decoding models instead of mass-univariate encoding
models has interesting potential for clinical practice, particularly for dis-
eases that are difficult to diagnose. Consequently, much work is currently
being invested in constructing classifiers that can predict the diagnosis of
individual subjects from structural or functional brain data (Ford et al.,
2003; Fan et al., 2007; Fu et al., 2008; Fan et al., 2008a; Klöppel et al.,

1Throughout this thesis, the term ‘above-chance classification’ refers to a classification
result whose estimate of generalization ability is significantly above the chance level. This
implies, in particular, that the significance of an accuracy estimate (e.g., 85%) can only
be judged in relation to the underlying number of test cases. See Chapters 3 and 4 for a
detailed treatment.
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v1 v2 v1 v2 

n.s. 

orange juice apple juice v1 

v2 

n.s. 

a b 

Figure 1.3: Univariate vs. multivariate models II. (a) Individual variables (or
voxels) may not reveal significant differences in activity across conditions when treated
independently. (b) When considering voxels jointly, clear separability of conditions may
emerge. This is why multivariate models can be more powerful than univariate models.

2008, 2009; Shen et al., 2010; Klöppel et al., 2012). Historically, these ef-
forts date back to positron emission tomography (PET) studies in the early
1990s (O’Toole et al., 2007). Today, attempts of using multivariate classi-
fiers for subject-by-subject diagnosis largely focus on MRI and fMRI data
(Ford et al., 2003; Fu et al., 2008; Fan et al., 2007, 2008b). In this broad
domain, the present thesis attempts to solve the problem of clinical appli-
cability in a very different fashion than conventional methods have done. It
is motivated by two current challenges, as described next.

Current challenges. Despite their increasing popularity, two challenges
critically limit the practical applicability of current classification and clus-
tering methods for functional neuroimaging data. These are, as discussed
below, (i) the high dimensionality of the data and (ii) the lack of inter-
pretability of conventional solutions.

First, classifying or clustering subjects directly in voxel space is diffi-
cult. This is because functional neuroimaging datasets typically exhibit
a very low signal-to-noise ratio; they are obtained in an extremely high-
dimensional measurement space; and they are characterized by a severe
mismatch between the large number of voxels and the small number of
available subjects. In the case of fMRI, for instance, a whole-brain scan
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may easily contain more than 100 000 voxels, whereas the number of exper-
imental repetitions (i.e., trials or subjects) is usually on the order of tens.
This is not an issue for procedures that rely, for instance, on Bayesian model
inversion and therefore do not overfit. However, an extreme mismatch be-
tween features and data points does create problems for many models that
explicitly or implicitly rely on parameter estimation rather than inversion.
These models typically require carefully designed algorithms for reducing
the dimensionality of the feature space without averaging out informative
activity. The underlying challenge is the problem of reconstruction (to af-
ford interpretability) or feature selection (to avoid overfitting).

Since an exhaustive search of the entire space of feature subsets is statis-
tically unwarranted and computationally intractable, various heuristics have
been proposed. One common approach, for example, is to simply include
only those voxels whose activity, when considered by itself, significantly dif-
fers between classes within the training set (Cox and Savoy, 2003). This
type of univariate feature selection is computationally efficient but fails to
find voxels that only reveal information when considered as an ensemble (for
an example of an intermediate strategy, see Brodersen, Wiech, Lomakina
et al., in preparation). Another method, termed searchlight analysis, finds
those voxels whose local environment allows for above-chance classification
(Kriegeskorte et al., 2006). Unlike the first approach, searchlight feature
selection is multivariate, but it fails to detect more widely distributed sets
of voxels that jointly encode information about the variable of interest.

Further strategies include: preselecting voxels based on an anatomical
mask (Haynes and Rees, 2005; Kamitani and Tong, 2005) or a separate
functional localizer (Cox and Savoy, 2003; Serences and Boynton, 2007);
spatial subsampling (Davatzikos et al., 2005); finding informative voxels us-
ing univariate models (Fu et al., 2008; Ford et al., 2003; Fan et al., 2007) or
locally multivariate searchlight methods (Kriegeskorte et al., 2006; Haynes
et al., 2007); and unsupervised dimensionality reduction (Shen et al., 2010;
Mourao-Miranda et al., 2005). Some have attempted to account for the in-
herent spatial structure of the feature space (Kriegeskorte et al., 2006; Soon
et al., 2009; Grosenick et al., 2009) or use voxel-wise models to infer a par-
ticular stimulus identity (Kay et al., 2008; Mitchell et al., 2008; Formisano
et al., 2008). Others have adopted a regularization perspective, e.g., using
automatic relevance determination (ARD; Yamashita et al., 2008) or spar-
sity constraints (Grosenick et al., 2008; van Gerven et al., 2009). Finally,
those submissions that performed best in the Pittsburgh Brain Activity In-
terpretation Competition (PBAIC 2007) highlighted the utility of kernel
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ridge regression (Chu et al., 2010) and relevance vector regression (Chu
et al., 2010; Valente et al., 2010).

The common assumption underlying all of these approaches is that inter-
esting variations of the data with regard to the class variable are confined to
a manifold that populates a latent space of much lower dimensionality than
the measurement space. However, most of these methods are only loosely
constrained by rules of biological plausibility. As a result, they may easily
lead to rather arbitrary subsets of selected voxels: deemed informative by
the classifier, but next to impossible to interpret physiologically.

This is the second challenge in conventional classification methods for
clinical applications: the interpretation of their results. Classification al-
gorithms per se yield predictions and can be used to establish a statistical
relationship between (multivariate) neural activity and a (univariate) vari-
able of interest. The ability to make predictions is indeed the primary goal in
fields concerned with the design of brain-machine interfaces (Sitaram et al.,
2007), algorithms for lie detection (Davatzikos et al., 2005; Kozel et al.,
2005; Bles and Haynes, 2008; Krajbich et al., 2009), or black-box tools for
clinical diagnostics (Klöppel et al., 2012). We argue, however, as others
have done before (cf. Friston et al., 2008), that cognitive and clinical neu-
roscience should not merely be aimed at maximizing prediction accuracy.
Rather, a more important goal is to make inferences on structure-function
mappings in the brain and to generate hypotheses for drug development
and treatment. High prediction accuracies may serve as an accompanying
measure of the amount of information that can be extracted from neural
activity, but should not represent the only goal (Figure 1.4).

Most classification studies to date attempt to draw conclusions from
overall prediction accuracies (Mitchell et al., 2003; Ford et al., 2003), the
spatial deployment of informative voxels (Kamitani and Tong, 2005, 2006;
Haynes and Rees, 2005; Hampton and O’Doherty, 2007; Kriegeskorte et al.,
2007; Grosenick et al., 2008; Hassabis et al., 2009; Howard et al., 2009),
the temporal evolution of discriminative information (Polyn et al., 2005;
Grosenick et al., 2008; Bode and Haynes, 2009; Harrison and Tong, 2009;
Soon et al., 2009), or patterns of undirected regional correlations (Craddock
et al., 2009).

These approaches may support discriminative decisions; they may allow
for the construction of information maps showing discriminative features;
but they are blind to the neuronal mechanisms (such as effective connecti-
vity or synaptic plasticity) that underlie discriminability of brain or disease
states. Mechanistic conclusions that relate to biologically meaningful enti-
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Figure 1.4: Prediction vs. inference. (a) The goal of prediction is to maximize
predictive accuracy, which is the primary aim in applications such as brain-machine
interfaces and automated black-box diagnostics. (b) The goal of inference is to compare
the evidence for different models of structure-function mappings in the brain. Here, we
emphasize that the second goal should not be neglected even when using classification
algorithms that intrinsically focus on the first.

ties such as brain connectivity or synaptic plasticity are hard to draw. In
other words: while some conventional classification studies have achieved
impressive diagnostic accuracy (cf. Klöppel et al., 2012), their results have
not improved our mechanistic understanding of disease processes.

In summary, classification algorithms and their underlying decoding
models have been increasingly used to infer cognitive or clinical brain states
from measures of brain activity. The practicality of current classifiers, how-
ever, is restricted by two major challenges. First, due to the high data
dimensionality and low sample size, algorithms struggle to separate infor-
mative from uninformative features, resulting in poor generalization per-
formance. Second, popular classification methods, applied to voxel-based
feature spaces, rarely afford mechanistic interpretability.

Generative embedding. This thesis describes a model-based analysis
approach, based on the idea of generative embedding, that may provide
a solution to the two challenges outlined above. In brief, our approach
incorporates neurobiologically interpretable generative models into discrim-
inative classification and clustering algorithms to provide a potential foun-
dation for long-term utility in clinical practice. The specific implementation
of generative embedding proposed in this thesis consists of six conceptual
steps which we summarize below (see Figure 1.5).
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The analysis begins, in step 1, by extracting time series of measurements
from regions of interest. In step 2, the data are explained in terms of
a generative model. Model inversion can be viewed as a mapping X →
MΘ that projects an example x ∈ X from data space onto a multivariate
probability distribution in a parametric family MΘ. Crucially, the model
is designed to accommodate observations gathered from all classes, and
therefore, when being inverted, it remains oblivious to the class a given
example stems from.

In step 3, a probability kernel kM : MΘ × MΘ is constructed that
represents a similarity measure between two inverted DCMs. This step
can be split up into an initial mapping MΘ → Rd followed by a vectorial
kernel k : Rd × Rd → R. The kernel implies a model-based feature space,
or so-called generative score space, that yields a comprehensive statistical
summary representation of every subject. In the illustrative participant
shown in Figure 1.5, the effective influence of region A on region B as well
as the self-connection of region B were particularly strong. This kernel is
used in step 4 for classification or clustering. For example, in the presence
of known external labels, one could employ a support vector machine to
distinguish between patients and healthy controls.

In step 5, the performance of the algorithm is evaluated with respect to
known labels, using validation measures such as classification accuracy or
clustering purity. The model-based feature space can, in a final step 6, be
investigated to examine which model parameters jointly contributed most
to the distinction between subgroups. In the example in Figure 1.5, the
influence of A on B and C were jointly most informative in distinguishing
between the two groups.

Dynamic causal models as generative models. The specific approach
to creating generative models of brain activity time series in this thesis is
based on dynamic causal modelling (DCM; Friston et al., 2003). DCM views
the brain as a nonlinear dynamical system of interconnected neuronal popu-
lations whose directed connection strengths may be modulated by external
perturbations (i.e., experimental conditions) or endogenous activity. Specif-
ically, DCM describes how the dynamics within interconnected populations
of neurons evolve over time and how their (causal) interactions change as a
function of external inputs. DCM was originally introduced for fMRI data
(Friston et al., 2003) but has subsequently been implemented for a variety
of measurement types, such as event-related potentials or spectral densities
obtained from electrophysiological measurements (David et al., 2006; Kiebel
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Figure 1.5: Generative embedding and model-based analyses. As described in
the main text, this schematic illustrates the six conceptual steps by which generative
embedding enables model-based analyses.

et al., 2009; Moran et al., 2009). In this thesis, we will use DCM to map
high-dimensional time series (i.e., fMRI or electrophysiological recordings)
onto low-dimensional vectors of parameter estimates.

Advantages over conventional methods. Generative embedding offers
three advantages over conventional analysis methods. First, it rests upon a
principled and biologically informed way of creating a feature space. As a
result, it may provide more accurate predictions by exploiting discriminative
information encoded in ‘hidden’ physiological quantities such as synaptic
connection strengths (e.g., Section 5.5.5).

Another advantage is that results can be interpreted in the context of
a mechanistic model. Thus, the approach affords mechanistic interpretabil-
ity of clinical classification and clustering solutions (e.g., Section 5.5.6 or
Section 6.4).

The third advantage of generative embedding is that it may supple-
ment evidence-based model-selection approaches, such as Bayesian model
selection (BMS), in two ways: (i) it enables model-based decoding when
discriminability of trials or subjects is not afforded by differences in model
structure but only by differences in patterns of parameter estimates under
the same model structure; and (ii) it enables structural model selection in
cases where BMS is not applicable (see p. 195 in Chapter 7).
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Long-term application: dissecting psychiatric conditions. Neuro-
logical and psychiatric spectrum disorders are typically defined in terms of
particular symptom sets, despite increasing evidence that the same symptom
may be caused by very different pathologies. Pathophysiological discovery,
classification, and effective treatment of such disorders will increasingly re-
quire a mechanistic understanding of inter-individual differences and clinical
tools for making accurate diagnostic inferences in individual patients.

In contrast to previous classification studies based on descriptive mea-
sures, which typically do not afford pathophysiological insights, generative
embedding may enable the discovery of mechanistically interpretable sub-
groups that are defined in terms of hidden physiological quantities such as
synaptic connection strengths. We argue that this can be achieved using a
combination of two primary analysis types, as introduced below.

Analysis type 1: model-based classification. In model-based clas-
sification, a generative model is combined with a discriminative classifier.
A preview of the sort of results that can be obtained from this analysis
type are shown in Figure 1.6. In this example, we distinguished a group
of stroke patients with moderate aphasia from a group of healthy controls,
using a DCM of fMRI activity recorded during a passive speech-listening
task. Generative embedding achieved a near-perfect balanced classification
accuracy of 98% (sensitivity 100%, specificity 96%) and significantly outper-
formed conventional activation-based and correlation-based methods. This
example demonstrates how disease states can be detected with very high
accuracy and, as we will see in Section 5.5, be interpreted mechanistically
in terms of abnormalities in connectivity.

Using classification algorithms on hierarchical datasets, as we do here,
requires us to revisit traditional approaches to performance evaluation. We
propose novel fixed-effects and mixed-effects models for inference on clas-
sification performance. We propose to replace conventional classification
accuracies by balanced accuracies whenever the data are not perfectly bal-
anced themselves. We illustrate the properties of these models using a
stochastic approximation based on Markov chain Monte Carlo. We then
derive a computationally more efficient deterministic approximation using
variational Bayes.

Application type 2: model-based clustering. Classification analy-
ses, as described above, may provide evidence that we can relate patterns
of model features to a known external variable, such as a disease state.



Statistical approach and applications 25

-10

0

10

-0.5

0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-10

0

10

-0.5

0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

g
e
n
e
ra

tiv
e
 

e
m

b
e
d
d
in

g
 

L
.H

G
 →

 L
.H

G
 

V
o
x
e
l 
(6

4
,-

2
4
,4

) 
m

m
 

L.MGB → L.MGB Voxel (-42,-26,10) mm 
Voxel (-56,-20,10) mm R.HG → L.HG 

type 2 

type 1 

voxel-based activity space model-based parameter space 

Figure 1.6: Detecting a remote lesion using generative embedding. As detailed
in Section 5.5, we analysed fMRI data from healthy volunteers and stroke patients with
moderate aphasia. We found that subject-specific directed connection strengths among
cortical regions involved in speech processing contained sufficiently rich discriminative
information to enable accurate predictions of the diagnostic category (healthy or aphasic)
of a previously unseen individual. Compared to a feature space of voxel-wise activity
(left), the induction of a generative score space (right) facilitates both separability and
interpretability (cf. Section 5.23).

Initially, however, these labels are absent in precisely those applications in
which one may expect our approach to unfold its greatest utility: in the
domain of psychiatric spectrum disorders. These disorders are typically di-
agnosed in terms of symptoms. Clearly, following a questionnaire that leads
to a diagnosis will always remain simpler and cheaper than acquiring fMRI
data followed by the application of a pattern-recognition algorithm. Put
differently, the costly reproduction of a potentially flawed label is of no use
for practical clinical applications.

We must therefore go one step further and complement classification
schemes by unsupervised analyses (Figure 1.7). What groups would we
discover if no external label information was present? Can we use model
parameters to generate hypotheses about subtypes within a group of patients
sharing the same symptoms?

It may seem ironic that, in order to validate any clustering solution,
we must return to known external variables, e.g., a known disease subtype.
Here, we will motivate the measure of balanced purity which we will use
to assess how well a clustering solution agrees with known structure in the
population.
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Figure 1.7: Long-term ambition. Psychiatry lacks pathophysiologically informed di-
agnostic classifications. This problem is particularly important in the domain of spectrum
disorders. Generative embedding may help dissect such disorders into mechanistically de-
fined subgroups. An initial proof of principle will be provided in Chapter 6.

We thus argue that model-based classification and model-based cluster-
ing must be used in conjunction to allow the utility of generative embedding
for the clinic to unfold. Classification is used to demonstrate the feasibility
of relating a pattern of connection strengths to an external variable. Clus-
tering is then used to establish subgroups when such external variables are
not available or flawed. Finally, if a clustering solution has been shown
to relate to clinically relevant variables (e.g., treatment response or clinical
outcome), we may return to classification and develop a diagnostic aid for
clinical practice.

1.2 Goals of this thesis
In summary of the strategy outlined above, this thesis aims to develop and
test the following research hypotheses:

• that model-based classification on the basis of generative embedding
may provide more accurate discrimination than conventional classifi-
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cation schemes;

• that model-based analysis results offer deeper mechanistic insights
than conventional analyses (in the sense of providing an explanation
in terms of components of a dynamical system and their causal inter-
actions);

• that group classification analyses require mixed-effects inference and
that this form of inference offers greater statistical sensitivity and
higher estimation accuracy than fixed-effects or random-effects mod-
els;

• that model-based clustering may provide interpretable groupings that
relate to relevant external variables such as clinical symptom scores.

1.3 Structure of this thesis
Chapter 2. We begin by describing the conceptual aspects of generative
embedding using the example of dynamic causal models for neuroimaging
data.

Chapter 3. A major application of generative embedding is model-based
classification, an important aspect of which is performance evaluation. We
highlight the flaws associated with contemporary ways of reporting clas-
sification performance. We argue that classification accuracies should be
replaced by balanced accuracies for which we present a fully Bayesian frame-
work.

Chapter 4. Classification algorithms in neuroimaging are typically em-
ployed in a group setting, which has important implications for their cor-
rect statistical evaluation. We begin by exposing the theory underlying
fixed-effects, random-effects, and mixed-effects inference. We then propose
several hierarchical Bayesian models for mixed-effects inference on classi-
fication accuracies and balanced accuracies. We illustrate the properties
of these models using a stochastic approximation based on Markov chain
Monte Carlo (MCMC). We then derive a computationally more efficient
deterministic approximation using variational Bayes (VB).
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Chapter 5. Using DCM as a generative model and a support vector ma-
chine as a discriminative classifier, we illustrate the utility of model-based
classification using three datasets. In the first two studies, we use a genera-
tive model of local field potentials (LFP) in rodents to decode the trial-wise
identity of a sensory stimulus from activity in somatosensory and auditory
cortex. In the third study, we infer the presence or absence of a remote lesion
from healthy brain regions, using fMRI in healthy participants and stroke
patients with aphasia. In brief, we will see that (i) generative embedding
yields a near-perfect classification accuracy, (ii) significantly outperforms
conventional ‘gold standard’ activation-based and correlation-based classi-
fication schemes, and (iii) affords a novel mechanistic interpretation of the
differences between aphasic patients and healthy controls during processing
of speech.

Chapter 6. Finally, we turn to generative embedding and its use in the
domain of unsupervised learning. We show how a procedure for model-based
clustering enables the discovery of subgroups that are defined in terms of
‘hidden’ physiological quantities such as synaptic connection strengths. We
envisage that future applications of the approach proposed in this thesis
may become relevant for generating novel mechanistic hypotheses for clinical
applications, by decomposing groups of patients with similar symptoms into
pathophysiologically distinct subgroups.

1.4 Original contributions
• Generative embedding for dynamic causal models. We estab-
lish a generative embedding approach for use with dynamic causal
models of brain function.

• Balanced accuracy. Classification accuracy is a poor measure of
classification performance when the data are imbalanced. We propose
that the balanced accuracy is a better indicator as it removes the bias
that may arise when a classifier is trained and tested on an imbalanced
dataset.

• Mixed-effects inference on classification performance. We de-
velop fully Bayesian approaches for classification group studies that
account for both fixed-effects (within-subjects) and random-effects
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(between-subjects) variance components, thus affording mixed-effects
inference.

• Variational Bayesian approximate inference. We derive a com-
putationally highly efficient variational approximation to mixed-effects
inference that is based on interpretable update equations.

• Model-based classification. We demonstrate the utility of genera-
tive embedding by classifying trial-wise and subject-wise states on the
basis of parameter estimates.

• Model-based clustering. We finally illustrate how the submission
of parameter estimates to a clustering algorithm makes it possible to
generate novel hypotheses about mechanistically defined subgroups of
a disease.

1.5 Publications
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Chapter 2

Generative embedding
and dynamic causal
modelling

Generative embedding constitutes an approach to model-guided dimension-
ality reduction. It exploits the idea that both the performance and inter-
pretability of classification and clustering approaches may benefit consider-
ably from the incorporation of available prior knowledge about the process
generating the observed data (see Shawe-Taylor and Cristianini, 2004, for
an overview). Dynamic causal modeling offers one way of achieving this.

2.1 Generative embedding
Generative embedding rests on two components: a generative model for
principled selection of mechanistically interpretable features on the one
hand; and a discriminative method for classification or clustering on the
other (see Figure 1.5 on p. 23). This chapter describes how this idea may
become useful in clinical neuroimaging. For corresponding publications, see
Brodersen et al. (2011a) and Brodersen et al. (2011b).1

1The term generative embedding is sometimes used to denote a particular model-
induced feature space, or so-called generative score space, in which case the associated
line of research is said to be concerned with generative embeddings. Here, we will use
the term in singular form to denote the process of using a generative model to project

33
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Figure 2.1: Analyses by data representation. Generative embedding can be viewed
as an alternative to previous analysis approaches that were either based on structural
or functional data. Generative embedding may be based on the same data as these
previous approaches (here: functional data), but it recruits a model to account for the
latent mechanisms by which the data were generated. In the case of neuroimaging, such
models may, for instance, comprise variables describing connectivity among elements of
a dynamical system.

Most current applications of classification algorithms in neuroimaging
begin by embedding measured data in a d-dimensional Euclidean space Rd.
In fMRI, for example, a subject can be represented by a vector of d features,
each of which corresponds to the signal measured in a particular voxel at a
particular point in time. This approach makes it possible to use any learning
algorithm that expects vectorial input; but it ignores the spatio-temporal
structure of the data as well as the process that generated them. This
limitation has motivated the search for kernel methods that provide a more
natural way of measuring the similarity between the functional datasets of
two subjects.

Generative models have proven powerful in explaining how observed
data are caused by an underlying (neuronal) system.2 One example in neu-

the data into a generative score space, rather than using the term to denote the space
itself.

2Unlike discriminative models, generative models describe the joint density of the
observed data and the parameters of a postulated generative process, rather than just
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roimaging is dynamic causal modelling (DCM; Friston et al., 2003). DCM
aims to model observed time series by a system of parameterized differential
equations with Gaussian observation noise. This approach enables statis-
tical inference on physiological quantities that are not directly observable
with current methods, such as directed interregional coupling strengths and
their modulation, e.g., by synaptic gating (Stephan et al., 2008).

From a pathophysiological perspective, disturbances of synaptic plastic-
ity and neuromodulation are at the heart of psychiatric spectrum diseases
such as schizophrenia (Stephan et al., 2009b) or depression (Castren, 2005).
It is therefore likely that classification and clustering of disease states could
benefit from exploiting estimates of these quantities.

Generative embedding represents a special case of using generative ker-
nels, such as the P-kernel (Haussler, 1999) or the Fisher kernel (Jaakkola
and Haussler, 1999). Generative kernels have been fruitfully exploited in
a range of applications (Bicego et al., 2004; Jebara et al., 2004; Hein and
Bousquet, 2005; Cuturi et al., 2006; Bosch et al., 2006, 2008; Bicego et al.,
2009b; Smith and Niranjan, 2000; Holub et al., 2005; Jaakkola et al., 1999;
Bicego et al., 2009a; Hofmann, 2000) and define an active area of research
(Minka, 2005; Lasserre et al., 2006; Perina et al., 2010; Martins et al., 2010).

Generative kernels are functions that define a similarity metric for ob-
served examples using a generative model. In the special case of generative
embedding, a generative kernel is used to transfer the inverted models into a
vectorial feature space in which an appropriate similarity metric is defined.
This feature space, which we refer to as a generative score space, embodies
a model-guided dimensionality reduction of the observed data. The kernel
defined in this space could be a simple inner product of feature vectors, or
it could be based on any other higher-order function, as long as it is pos-
itive definite (Mercer, 1909). Thus, while all generative kernels (e.g., the
Fisher kernel) are based on an implicit feature space, generative embedding
makes this feature space explicit. This exposition has the advantage that
subsequent analysis results become interpretable, dimension by dimension,
in relation to the underlying feature space.

Using a kernel for classification and clustering confers important advan-
tages with respect to the general applicability of our approach. In partic-
ular, it is possible to define a problem-specific kernel and combine it with
a general-purpose algorithm for discrimination. This makes our approach
modular and easily applicable, e.g., to different acquisition modalities.

the conditional density of the data given the parameters.
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2.2 Dynamic causal modelling
Dynamic causal modelling is a modelling approach designed to estimate ac-
tivity and effective connectivity in a network of interconnected populations
of neurons. DCM regards the brain as a nonlinear dynamical system of
interconnected nodes and an experiment as a designed perturbation of the
system’s dynamics (Friston et al., 2003). Its goal is to provide a mechanistic
explanation of observed measures of brain activity. While the mathematical
formulation of DCM varies across measurement types, common mechanisms
modelled by all DCMs3 include synaptic connection strengths and their ex-
perimentally induced modulation (Stephan et al., 2008; David et al., 2006;
Chen et al., 2008; Moran et al., 2009; Daunizeau et al., 2009). Such ex-
perimental manipulations enter the model in two different ways: they can
elicit responses through direct influences on specific regions (e.g., sensory
inputs), or they can modulate the strength of coupling among regions (e.g.,
task demands or learning).

Regardless of data modality, dynamic causal models are generally hierar-
chical, comprising two model layers (Stephan et al., 2007b). The first layer is
a model of the dynamics among interacting neuronal populations in the con-
text of experimental perturbations. The second layer is a modality-specific
forward model that translates source activity into measurable observations.
It is the neuronal model that is typically of primary interest (Figure 2.2).

DCM strives for neurobiological interpretability of its parameters; all
model constituents mimic neurobiological mechanisms and hence have an ex-
plicit neuronal interpretation. In particular, the neural-mass model embod-
ied by DCM is largely based on the mechanistic model of cortical columns
originally proposed by Jansen and Rit (1995) and further refined in follow-
up studies (David and Friston, 2003; David et al., 2006; Moran et al., 2009).
DCM parameters represent, for example, synaptic weights and their context-
specific modulation. In the case of electrophysiological data, the model
describes even more fine-grained processes such as spike-frequency adapta-
tion or conduction delays. In this regard, DCM fundamentally departs from
previous approaches, such as multivariate autoregressive models, that either
characterized experimental effects in a purely phenomenological fashion or
were only loosely coupled with biophysical mechanisms.

For a given set of recorded data, estimating the parameters of a dynamic
causal model means inferring what neural causes have most likely given rise

3Following standard practice, we use the term DCM to refer both to a specific dynamic
causal model and to dynamic causal modelling as a method.
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Figure 2.2: Dynamic causal modelling. DCM regards the brain as a nonlinear
dynamical system of interconnected nodes, and an experiment as a designed perturbation
of the system’s dynamics. The model consists of a neuronal model as well as a forward
model that describes how activity at the neuronal level translates into observed signals.
DCM strives for a mechanistic explanation of experimental measures of brain activity.
This makes it an attractive model for generative embedding. (Figure adapted from slides
by K.E. Stephan.)

to the observed responses, conditional on the model. Such models can be
applied to a single population of neurons, e.g., a cortical column, to make
inferences about neurophysiological processes such as amplitudes of postsy-
naptic responses or spike-frequency adaptation (Moran et al., 2008). More
frequently, however, models are used to investigate the effective connecti-
vity among remote regions and how it changes with experimental context
(e.g., Garrido et al., 2008; Stephan et al., 2008). In this thesis, we will use
DCM in both ways, applying it to different datasets, ranging from single-
site recording from the somatosensory barrel cortex two a two-electrode
recording from the auditory cortex.

DCM uses a fully Bayesian approach to parameter estimation, with em-
pirical priors for the haemodynamic parameters and conservative shrinkage
priors for the coupling parameters (Friston, 2002; Friston et al., 2003) all
of which can be updated in light of new experimental evidence (cf. Stephan
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et al., 2007a). Given a model m, combining the prior density over the pa-
rameters p(θ | m) with the likelihood function p(x | θ,m) yields the posterior
density p(θ | x,m). This inversion can be carried out efficiently by maximiz-
ing a variational free-energy bound to the log model evidence, ln p(x | m),
under Gaussian assumptions about the posterior (the Laplace assumption;
see Friston et al., 2007, for details).4 Model inversion can be viewed as a
mapping X → MΘ that projects a given example x ∈ X (i.e., data from
a single subject) onto a multivariate probability distribution p(θ | x) in a
parametric familyMΘ. Importantly, model inversion proceeds in an unsu-
pervised fashion, i.e., in ignorance of external labels y that might later be
used in the context of classification or clustering.5

While model selection is an important theme in DCM (Stephan et al.,
2010), in this thesis we are not primarily concerned with the question of
which of several alternative DCMs may be optimal for explaining the data
or for classifying subjects; these issues can be addressed using Bayesian evi-
dence methods (Stephan et al., 2009a; Penny et al., 2004) or by applying
cross-validation to the classifications suggested by each of the models, re-
spectively. However, an important issue is that model specification cannot
be treated in isolation from its subsequent use for classification or cluster-
ing. Specifically, some procedures for selecting time series can lead to biased
estimation of classification accuracy or purity. We will therefore provide a
detailed assessment of different strategies for time-series selection in DCM-
based generative embedding and highlight those procedures which safeguard
against obtaining optimistic estimates of classification performance.

2.3 An embedding for electrophysiology
This thesis proposes two concrete approaches to generative embedding for
neuroscientific datasets. The first concerns direct invasive electrophysiolog-
ical recordings in animals and will be developed in this section. Details can
be found in other publications (David and Friston, 2003; Kiebel et al., 2009;
Moran et al., 2008, 2009). However, in order to keep the present thesis self-
contained, a brief summary of the main modelling principles is presented in
the following subsections.

4A similar strategy will be used for a variational Bayesian approach to inference on
classification performance; see Chapter 4.

5The literature on DCM has adopted the convention of denoting the hidden states by
x and the data by y. Here, in order to keep the notation consistent with the literature
on classification, we use z for the hidden states, x for the data, and y for external labels.
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Neural-mass model

The neural-mass model in DCM describes a set of n neuronal populations
as a system of interacting elements, and it models their dynamics in the
context of experimental perturbations. At each time point t, the state of the
system is expressed by a vector z(t) ∈ Rn. The evolution of the system over
time is described by a set of ordinary differential equations that evolve the
state vector and use a Taylor approximation to account for small conduction
delays among spatially separate populations. The equations specify the rate
of change of activity in each region [i.e., of each element in z(t)] as a function
of three variables: the current state z(t) itself; the strength of experimental
inputs u(t) (e.g., sensory stimulation); and a set of time-invariant neuronal
parameters θn. Thus, in general terms, the dynamics of the model are given
by an n-valued function

dz(t)
dt = f (z(t), u(t), θn) . (2.3.1)

Within the framework of DCM, each of the n regions is modelled as a micro-
circuit whose properties are derived from the biophysical model of cortical
columns proposed by Jansen and Rit (1995). Specifically, each region is
assumed to comprise three subpopulations of neurons whose voltages and
currents constitute the state vector z(k) ∈ R9 of a region k (for a description
of the individual components see next paragraph). These populations com-
prise pyramidal cells, excitatory interneurons, and inhibitory interneurons.
The connectivity within a column or region is modelled by intrinsic exci-
tatory and inhibitory connections. Connections between remote neuronal
populations are excitatory and target specific neuronal populations, depend-
ing on their relative hierarchical position, resulting in lateral, forward, and
backward connections (Felleman and van Essen, 1991). Experimentally con-
trolled sensory inputs affect the granular layer and are modelled as a mixture
of one fast, event-related and various slow, temporally dispersed components
of activity.

Region-specific constants and parameters comprise (i) time constants G
of the intrinsic connections, (ii) time constants and maximum amplitudes of
excitatory/inhibitory postsynaptic responses (Te/Ti, He/Hi), and (iii) input
parameters which specify the delay and dispersion of inputs arriving in
the granular layer. Two additional sets of parameters control connections
between regions: (iv) extrinsic connection parameters, which specify the
specific coupling strengths between any two regions; and (v) conduction
delays, which characterize the temporal properties of these connections,
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and whose effect can be approximated without the need to reformulate the
system in terms of delay differential equations.

Forward model for LFPs

The forward model within DCM describes how (latent) neuronal activity
in individual regions generates (observed) measurements. Compared to the
relatively complex forward models used for fMRI or EEG, the forward model
for LFPs is simpler, requiring only a single (gain) parameter for approxi-
mating the spatial propagation of electrical fields in cortex (Moran et al.,
2009).

In most applications of dynamic causal modelling, one or several candi-
date models are fitted to all data from each experimental condition (e.g.,
by concatenating the averages of all trials from all conditions and provid-
ing modulatory inputs that allow for changes in connection strength across
conditions). In the context of generative embedding for LFP data, by con-
trast, we are fitting the model in a true trial-by-trial fashion. It is therefore
critical that the model is not aware of the category a given trial was taken
from. Instead, its inherent biophysical parameters should be able to reflect
class differences by themselves.

2.4 An embedding for fMRI
In addition to an embedding for the trial-by-trial classification of electro-
physiological recordings, we propose a DCM-based embedding for subject-
by-subject classification of fMRI data.

Neuronal model for fMRI

In the classical bilinear DCM formulation (Friston et al., 2003) as imple-
mented in the software package SPM8/DCM10, the neuronal model is given
by

dz(t)
dt = f (z(t), θn, u(t)) (2.4.1)

=

A+
J∑
j=1

uj(t)B(j)

 z(t) + Cu(t) (2.4.2)
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where z(t) represents the latent neuronal state at time t, A is a matrix of en-
dogenous connection strengths, B(j) represents the additive change of these
connection strengths induced by modulatory input uj , and C denotes the
strengths of direct (driving) inputs j = 1 . . . J . These neuronal parameters
θn = (A,B(1), . . . , B(J), C) are rate constants with units s−1.

Forward model for fMRI

The second layer of DCM for fMRI is a biophysically motivated forward
model that describes how a given neuronal state translates into a measure-
ment:

p (x(t) | z, θh, σ) = N
(
x(t)

∣∣ g (z, t, θh) , σ2) (2.4.3)

The forward model rests upon a nonlinear operator g(·) that links a time
series of latent neuronal states z(t) to a predicted blood oxygen level depen-
dent (BOLD) signal x(t) via changes in vasodilation, blood flow, blood vol-
ume, and deoxyhaemoglobin content (see Stephan et al., 2007a, for details).
The model has haemodynamic parameters θh and a Gaussian measurement
error with variance σ2.

The haemodynamic parameters primarily serve to account for varia-
tions in neurovascular coupling across regions and subjects and are typically
not of primary scientific interest. In addition, the haemodynamic parame-
ters exhibit strong inter-dependencies and thus high posterior (co)variances
(Stephan et al., 2007a), which makes it difficult to establish the distinct con-
tribution afforded by each parameter. For these reasons, the model-induced
feature spaces in this thesis will be based exclusively on the neuronal pa-
rameters θn, now simply referred to as θ.

2.5 Constructing the kernel
Given a collection of inverted generative models, the kernel defines the simi-
larity metric under which independently inverted models are to be compared
to one another for the purposes of classification or clustering.

In generative embedding, the choice of an appropriate kernel depends on
the definition of the generative score space. A straightforward way to create
a Euclidean vector space from an inverted DCM is to consider the posterior
means or maximum a posteriori (MAP) estimates of model parameters of
interest (e.g., parameters encoding synaptic connection strengths).
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More formally, we could define a mapping MΘ → Rd that extracts
a subset of posterior means µ̂ from the posterior distribution p(θ | x,m).
This simple d-dimensional vector space expresses discriminative information
encoded in the connection strengths between regions, as opposed to activity
levels within these regions. Alternatively, we could incorporate elements
of the posterior covariance matrix into the vector space. This step would
be beneficial if class differences were revealed by the precision with which
connection strengths can be estimated from the data.

In principle, once a generative score space has been created, any con-
ventional vectorial kernel

k : Rd × Rd → R (2.5.1)

can be used to compare two posteriors over model parameters. The simplest
one is the linear kernel,

k(xi, xj) := xT
i xj , (2.5.2)

representing the inner product between two vectors xi and xj without any
prior feature transformation.

Nonlinear kernels, such as quadratic, polynomial or radial basis function
kernels, transform the generative score space, which makes it possible to
consider quadratic (or higher-order) class boundaries and therefore account
for possible interactions between features. Nonlinear kernels, however, have
several disadvantages for generative embedding. As the complexity of the
kernel increases, so does the risk of overfitting. Furthermore, feature weights
are easiest to interpret in relation to the underlying model when they do not
undergo further transformation. In the case of model-based classification,
in particular, we will see that the contribution of a particular feature (i.e.,
model parameter) to the success of the classifier can be understood as the
degree to which the neuronal mechanism represented by that parameter aids
classification. A simple linear kernel will therefore be our preferred choice.

In summary, we define a mapping MΘ → Rd from a subject-specific
posterior distribution of model parameters p(θ | x,m) to a feature vector
µ̂. We then use a linear kernel k : Rd × Rd → R for this model-based
feature space. Together, these two steps define a probability kernel kM :
MΘ ×MΘ → R that represents a similarity metric between two inverted
models and allows for mechanistic interpretations of how group membership
of different trials or subjects is encoded by spatiotemporal LFP or fMRI
data.



Chapter 3

Fixed-effects inference on
classification performance

Assessing the utility of model-based classification critically necessitates a
measure of classification performance. There are two reasons for this re-
quirement. Firstly, the practical clinical value of model-based classification
depends on the degree to which unseen examples (e.g., subjects) can be iden-
tified with their correct class labels (e.g., disease states; Figure 3.1). Sec-
ondly, model-based classification can be used to compare competing models
in terms of their discriminative capacity in relation to an external class
label.

Whenever there is no specific need to impose different costs on differ-
ent types of misclassification, the overall accuracy is of primary interest. In
these cases, a commonly adopted approach for summarizing cross-validation
results is to report the average sample accuracy (or average sample error)
across all folds. However, measuring performance in this way has two short-
comings.

The first is that the approach does not entail meaningful confidence
intervals of a true underlying quantity. In particular, computing the stan-
dard error of the mean across all folds enforces symmetric limits and may
lead to confidence intervals of accuracy including values above 100%. The
second weakness in considering the average accuracy is that it may give a
misleading idea about generalization performance in situations where a bi-
ased classifier is tested on an imbalanced dataset. Under these conditions,
a naïve evaluation of the average accuracy (i.e., one that does not take into

43
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Figure 3.1: Trial-by-trial classification. When classifying individual trials in a
given subject, classification outcomes can be represented as 1’s and 0’s, corresponding to
correctly and incorrectly classified trials, respectively. Statistical inference concerns two
important questions: what is the generalization performance of the classifier; and how
does its performance compare to a competing classifier.

account the degree of class imbalance) may lead to false conclusions about
the significance with which an algorithm has performed better than chance.

In this chapter, we demonstrate how both shortcomings can be over-
come by replacing the average sample accuracy by the posterior balanced
accuracy for which we derive a conditional density using a fully Bayesian
approach. We begin by considering a simple Bayesian approach to evalu-
ating classification accuracy (Section 3.1). We then extend this approach
to inference on the balanced accuracy, which is a more natural measure of
performance when the data are not fully balanced (Section 3.2). For corre-
sponding publications, see Brodersen et al. (2010a,b) and Brodersen et al.
(in press).

3.1 Inference on the accuracy
In a binary classification analysis, let n be the number of examples underly-
ing a leave-m-out cross-validation scheme with K folds. This setting gives
rise to two types of hypothesis that we wish to test. First, is a classification
algorithm operating at the level of guessing, or is its generalization accuracy
significantly above chance? Second, more generally, does a classification al-
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gorithm significantly outperform an alternative algorithm? Both questions
require statistical inference on a measure of generalizability.

3.1.1 Classical inference for a single subject
A common way of computing an estimate of generalizability begins by sum-
ming the number of correctly labelled test cases, k, across all cross-validation
folds,

k =
K∑
i=1

ri, (3.1.1)

where ri ∈ {0, . . . ,m}. The sample accuracy1 can then be reported as the
fraction k

n .
One way of estimating the significance of the sample accuracy is by

considering the standard error of the mean, σ̂/
√
K − 1, where σ̂ is the

empirical standard deviation of rim , observed across all cross-validation folds
i = 1 . . .K. This quantity, however, is dependent on arbitrary design choices
such as m, the number of test cases in each cross-validation fold, and, worse
still, may easily lead to error bars including values above 100%.

A very different route can be taken by invoking an explicit statistical
model of classification outcomes. One well-known possibility is to regard
each test case as an independent Bernoulli experiment and compare the ob-
tained sample accuracy to the level that must be reached by an above-chance
learning algorithm. In classical inference one could obtain a maximum-
likelihood (ML) estimate for the true accuracy π of the classifier. This
estimate is

π̂ML = argmaxπ Bin(k | π, n) = k

n
, (3.1.2)

which corresponds exactly to the sample accuracy itself and hence provides
an alternative interpretation for it.

Point estimates by themselves are of course not sufficient to assess statis-
tical significance. In order to determine, for instance, whether a given clas-
sification outcome is the result of an algorithm that operates significantly

1Since classification error = 1 − classification accuracy, the sample error could be
reported instead; this correspondence pertains to all other accuracy-related quantities
discussed throughout this thesis.
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above chance, classical inference proceeds by asking how probable the ob-
served value (or greater values) of the estimator is (are), assuming that the
true accuracy π is at chance. This tests the null hypothesis H0 : π = 0.5,
yielding a p-value,

p = 1−FBin(k | 0.5), (3.1.3)

where FBin(k | 0.5) is the cumulative distribution function of the binomial
distribution with π = 0.5. While this approach does offer a measure of
classical statistical significance, it does not associate the accuracy with a
level of precision. As a result, it does not yet provide, for example, an
immediate way of comparing two algorithms both of which have been found
to operate above chance. More generally, maximum-likelihood estimation
risks overfitting, and it does not explicitly account for prior or posterior
uncertainty about classification performance.

In summary, the practical simplicity of maximum likelihood is offset by
its conceptual limitations. These limitations can be resolved by turning to
a fully Bayesian approach, as described next.

3.1.2 The beta-binomial model

Rather than averaging the outcomes obtained on different cross-validation
folds or computing an ML estimate of classification accuracy, we now turn
to a more flexible Bayesian treatment.

Model

A classification algorithm, applied to n trials from a single subject, produces
a sequence of classification outcomes y1, . . . , yn each of which is either cor-
rect (1) or incorrect (0). Analyses of these outcomes are typically based on
the assumption that, on any given trial independently, the classifier makes
a correct prediction with probability 0 ≤ π ≤ 1, and an incorrect one with
probability 1− π. Thus, conditional on π, outcomes are given as a series of
independent and identically distributed (i.i.d.) Bernoulli trials,

p(yi | π) = Bern(yi | π) (3.1.4)
= πyi(1− π)1−yi ∀i = 1 . . . n. (3.1.5)
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The i.i.d. assumption derives from the assumption that the observations in
the test set are i.i.d. themselves.2 It allows us to summarize a sequence of
outcomes in terms of the number of correctly predicted trials, k =

∑n
i=1 yi,

and the total number of test trials, n. Since the sum of several Bernoulli
variables follows a binomial distribution, the number of successes is dis-
tributed as:

p(k | π, n) = Bin(k | π, n) (3.1.6)

=
(
n

k

)
πk(1− π)n−k (3.1.7)

In this setting, Bayesian inference differs from classical maximum-likelihood
estimation in that it assesses the plausibility of all possible values of π before
and after observing actual data, rather than viewing π as a fixed parameter
that is to be estimated.3 Incidentally, it is precisely this problem that formed
the basis of the first Bayesian analyses published by Bayes and Price (1763)
and Laplace (1774).

A natural choice for the prior distribution p(π) is the Beta distribution,

p(π | α0, β0) = Beta(π | α0, β0) (3.1.8)

= Γ(α0 + β0)
Γ(α0) Γ(β0)π

α0−1(1− π)β0−1, (3.1.9)

where α0, β0 > 0 are hyperparameters, and the Gamma function Γ(·) is
required for normalization. Multiplying (3.1.7) with (3.1.9) (and integrating
out π) gives rise to an overdispersed form of the binomial distribution known
as the beta-binomial distribution (Figure 3.2; Pearson, 1925; Skellam, 1948;
Lee and Sabavala, 1987).

In the absence of prior knowledge about π, we use a flat prior by setting
α0 = β0 = 1, which turns the Beta distribution into a uniform distribution
over the [0, 1] interval. The hyperparameters α0 and β0 can be interpreted
as virtual prior counts of α0− 1 correct and β0− 1 incorrect trials. Thus, a
uniform prior is sometimes interpreted as ‘zero virtual prior observations’ of
either kind, although this interpretation has its limits as there is no absolute
scale on the number of virtual points.4

2This assumption is not always made in the context of cross-validation, but is easily
justified when the data are only split once, without any cross-validation (see discussion
in Section 4.8 on p. 119).

3Note that n depends on the experimental design and is not subject to inference.
4For a discussion of alternative priors, see Gustafsson et al. (2010).
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Figure 3.2: Beta-binomial model for Bayesian fixed-effects inference on clas-
sification accuracy. Because individual classification outcomes can be viewed as
Bernoulli outcomes, the sum of correctly classified examples follows a Binomial distribu-
tion. Our uncertainty about its parameter π is described by a Beta density. Blank circles
correspond to latent variables, filled circles represent observed data.

Inference

Rather than finding a point estimate π̂ML of true classification accuracy,
the above model allows us to compute a full posterior distribution by mul-
tiplying the prior with the likelihood,

p(π | k, α0, β0) = p(k | π)p(π | α0, β0)
p(k | α0, β0) , (3.1.10)

where integration over π provides the normalization constant

p(k | α0, β0) =
∫ 1

0
p(k | π) p(π | α0, β0) dπ (3.1.11)

= Bb(k | α, β). (3.1.12)

The beta-binomial distribution in (3.1.12) relates an observation k directly
to the hyperparameters α0 and β0 by marginalizing over the intermediate
variable π.

Thanks to conjugacy, the posterior over π has the same functional form
as the prior,

p(π | k, α0, β0) = Beta(π | α0 + k, β0 + n− k), (3.1.13)

which can be rewritten as

p(π | αn, βn) = Beta(π | αn, βn). (3.1.14)
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This shows that the above inference can be interpreted as an update step in
which the virtual prior counts α0 and β0 have been incremented by the num-
ber of observed successes and failures, respectively, leading to new counts
αn = α0 + k and βn = β0 + n − k. As the current posterior turns into
the next prior, a sequential update scheme evolves that is just one of the
beneficial consequences of conjugacy in Bayesian inference.

One of the principal advantages of the Bayesian approach is the flexibility
with which posterior inferences can be summarized. For instance, given the
posterior distribution p(π | k, α0, β0) with hyperparameters α0 = β0 = 1,
one could report a point estimate of the classification accuracy by giving
the posterior expectation

E[π | k, α0, β0] = k + 1
n+ 2 . (3.1.15)

Alternatively, one could report the mode of the distribution, that is, the
maximum a posteriori (MAP) estimate

argmaxk p(π | k, α0, β0) = k

n
. (3.1.16)

The above shows that the sample accuracy k/n can now be reinterpreted
as the MAP estimate of the accuracy under a noninformative prior.5 These
two examples show how classical and Bayesian inference may lead to similar
conclusions at the surface; the Bayesian approach, however, extends more
easily to more complex problems.

Rather than picking a point from the posterior, it is often more informa-
tive to summarize the distribution in terms of a posterior interval or credible
interval. For example, one could give a central 95% posterior interval of the
classification accuracy as[

B−1
0.025(α0 + k, β0 + n− k); B−1

0.975(α0 + k, β0 + n− k)
]
, (3.1.17)

where B−1
p (·) denotes the inverse cumulative density function of the Beta

distribution at point p.
The most important question for classification analyses in neuroimag-

ing is whether the true classification accuracy is greater than chance. A
Bayesian analogue of a classical p-value can be obtained as

Pr(π < 0.5 | k, α0, β0) = B(α0 + k, β0 + n− k), (3.1.18)
5Alternatively, the sample accuracy could be interpreted as the posterior expectation

under an improper prior with α0 = β0 = 0.
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where B(·) is the cumulative density function of the Beta distribution. We
refer to this probability as the (posterior) infraliminal probability of the clas-
sifier. It represents the subjective posterior probability of the classification
accuracy being smaller than the performance expected under chance.6

In addition to inference on latent variables such as the classification
accuracy π, a Bayesian approach also enables inference on quantities that
are observable but not yet observed. Of particular interest is the posterior
predictive distribution over k̃ the number of correct predictions in a future
sequence of ñ trials, which can now be computed without resorting to a
plug-in estimate for π. While the prior predictive density is conditional
only on the hyperparameters α0 and β0,

p(k̃ | α0, β0) (3.1.19)
= Bb(k̃ | α0, β0) (3.1.20)

= Γ(ñ+ 1)
Γ(k̃ + 1) Γ(ñ− k̃ + 1)

Γ(α0 + k) Γ(β0 + ñ− k̃)
Γ(α0 + β0 + ñ)

Γ(α0 + β0)
Γ(α0)Γ(β0) , (3.1.21)

the posterior predictive density is also conditional on the data k,

p
(
k̃
∣∣ k, α0, β0

)
(3.1.22)

=
∫
p
(
k̃
∣∣ π) p(π | k, α0, β0)dπ (3.1.23)

=
(
ñ

k̃

)
Γ(αn + βn) Γ(αn + k̃) Γ(βn + ñ− k̃)

Γ(αn) Γ(βn) Γ(αn + βn + ñ) , (3.1.24)

where we have used the same definitions for αn and βn as in (3.1.14). One
common way of making use of the posterior predictive distribution is for
the purpose of model validation. For instance, one could compute the prob-
ability that the data k̃ obtained from a replication of the experiment with
ñ = n, could be more extreme than the observed data. More importantly
still, the posterior predictive distribution is the main distribution of interest
when comparing two classifiers to one another in a hierarchical setting (see
Chapter 4).

The approach described here is conceptually well-established, although
it leaves an important question unanswered: the question of which perfor-
mance measure is most suitable when asking whether a (model-based) clas-
sification algorithm has picked up a statistical relationship between data

6An alternative to using the infraliminal probability is Bayesian model comparison.
See p. 121 in Section 4.8 for a discussion.
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features and class labels. In the next section, we will therefore show how
an important practical weakness of the above approach can be overcome by
considering a different performance measure.

3.2 Inference on the balanced accuracy
A well-known phenomenon in binary classification is that a training set con-
sisting of different numbers of representatives from either class may result
in a classifier that is biased towards the majority class. When applied to
a test set that is similarly imbalanced, this classifier yields an optimistic
accuracy estimate. In an extreme case, the classifier might assign every
single test case to the majority class (which is the optimal strategy given no
information about the classes other than their frequencies in the training
set), thereby achieving an accuracy equal to the proportion of test cases
belonging to the majority class.

Previous studies have examined different ways of addressing this prob-
lem (see Akbani et al., 2004; Chawla et al., 2002; Japkowicz and Stephen,
2002). One strategy, for example, is to restore balance on the training set
by undersampling the large class or by oversampling the small class. An-
other strategy is to modify the costs of misclassification in such a way that
no bias is acquired. However, while these methods may under some cir-
cumstances prevent a classifier from becoming biased, they do not provide
generic safeguards against reporting an optimistic accuracy estimate.

Another solution would be to stick with the conventional accuracy but
relate it to the correct baseline performance, i.e., the relative frequency of
the majority class, rather than, e.g., 0.5 in the case of binary classification.
The main weakness of this solution is that each and every report of classi-
fication performance would have to include an explicit baseline level, which
makes the comparison of accuracies across studies, datasets, or classifiers
involved and tedious.

The above considerations motivate the use of a different performance
measure: the balanced accuracy, defined as the arithmetic mean of sensitiv-
ity and specificity, or the average accuracy obtained on either class,

φ := 1
2
(
π+ + π−

)
. (3.2.1)

where π+ and π− denote classification accuracies on positive and negative
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Figure 3.3: Twofold beta-binomial model for Bayesian fixed-effects inference
on the balanced classification accuracy. Blank circles correspond to latent variables,
filled circles represent observed data.

trials, respectively.7 If the classifier performs equally well on either class,
this term reduces to the conventional accuracy (i.e., the number of cor-
rect predictions divided by the total number of predictions). In contrast, if
the conventional accuracy is above chance only because the classifier takes
advantage of an imbalanced test set, then the balanced accuracy, as ap-
propriate, will drop to chance.8 We can evaluate the balanced accuracy in
a hierarchical setting by extending the beta-binomial model, as described
next.

Model

Treating the balanced accuracy as a random variable allows us to reason
about its prior and posterior distribution. Depending on whether the true
label of a given test case is positive or negative, we regard a prediction as
a draw either (i) from a bucket of ‘true positive’ or ‘false negative’ balls, or
(ii) from a bucket of ‘true negative’ or ‘false positive’ balls. Put differently,
under the same distributional assumptions as made above, we are effec-
tively applying the beta-binomial model separately to the results on truly
positive and truly negative examples. We are hence interested in the prob-
ability density of φ = 1

2 (π+ + π−), where π+ and π− are random variables
specifying the accuracy on positive and negative examples, respectively.

7Unlike the measure described in Velez et al. (2007), the balanced accuracy is symmet-
ric about the type of class. If desired, this symmetry assumption can be dropped, yielding
c × k+

n+ + (1 − c) × k−

n−
, where c ∈ [0, 1] is the cost associated with the misclassification

of a positive example.
8Additional details on the conceptual difference between accuracies and balanced ac-

curacies will be discussed in Section 4.8.



Inference on the balanced accuracy 53

Inference

A closed form for the distribution of φ is not available, and so we resort to a
numerical approximation. For this, we first note that the distribution of the
sum of the two class-specific accuracies, s := π+ + π−, is the convolution of
the distributions for π+ and π−,

p
(
s | α+

n , β
+
n , α

−
n , β

−
n

)
(3.2.2)

=
∫ s

0
pπ+(s− z | α+

n , β
+
n ) pπ−(z | α−n , β−n ) dz, (3.2.3)

where the subscripts of the posterior distributions pπ+(·) and pπ−(·) serve
to remove ambiguity. We can now obtain the posterior distribution of the
balanced accuracy by replacing the sum of class-specific accuracies by their
arithmetic mean,

p(φ | α+
n , β

+
n , α

−
n , β

−
n ) (3.2.4)

=
∫ 2φ

0
pπ+(2φ− z | α+

n , β
+
n ) pπ−(z | α−n , β−n ) dz (3.2.5)

=
∫ 2φ

0
Beta(2φ− z | α+

n , β
+
n ) Beta(z | α−n , β−n ) dz. (3.2.6)

Thus, assuming a flat prior for the true balanced accuracy, we can report
cross-validation results by describing the posterior distribution of the bal-
anced accuracy. Note that the mean (mode) of the distribution of the bal-
anced accuracy does not necessarily equal the mean of the means (modes)
of the separate accuracy distributions for positive and negative examples.
There are no analytical forms for the mean, the mode, or a posterior prob-
ability interval. However, we can compute numerical approximations.

We will postpone further details on the sort of inferences one might
typically want to report to Chapter 4, in which we will discuss a more
general (hierarchical) approach to performance evaluation. We therefore
restrict ourselves here to a small set of simulations to illustrate the key
features of our approach in contrast to classical inference.

3.2.1 Applications
Before turning to empirical data (Section 4.7.4), we will begin by demon-
strating the key properties of a Bayesian approach to inference on balanced



54 Inference on the balanced accuracy

C2 

actual + actual – 

predicted + 

predicted – 

C1 average accuracy 
 2 std. errors 

mean accuracy 

and 95% mass 

mean bal. acc. 

and 95% mass 

chance actual + actual – 

Figure 3.4: Comparison of accuracy measures. Based on two illustrative confusion
matrices C1 and C2, the first example shows how the conventional average accuracy (red)
may imply a confidence interval that includes values above 100%. The second example
shows how accuracies, unlike balanced accuracies (green), falsely suggest above-chance
generalizability in the case of a biased classifier that has taken advantage of an imbalanced
test set.

accuracies using a small set of hand-crafted examples. As a result of train-
ing and testing two independent classifiers on different datasets, let C1 and
C2 be the confusion matrices of the respective results, summed across all
cross-validation folds. We wish to compare the average accuracy (along
with standard errors) to the posterior accuracy and the posterior balanced
accuracy (Figure 3.4).

In the first example, the test set is perfectly balanced (70 positive vs.
70 negative examples). As a result, the differences between the three num-
bers are not substantial. However, the simulation does illustrate how an
interval of 2 standard errors around the average accuracy (i.e., the common
approximation to a 95% confidence interval) includes values above 100%
(Figure 3.4, left box, red interval). In contrast, the probability intervals of
the posterior accuracy and balanced accuracy show the desired asymmetry
(blue and green intervals).

In the second example, both the average accuracy and the mean of
the posterior accuracy seem to indicate strong classification performance
(Figure 3.4, right box, red and blue intervals). The balanced accuracy,
by contrast (green interval), reveals that in this simulation the test set
was imbalanced (45 positive vs. 10 negative examples) and, in addition,
the classifier had acquired a bias towards the large class (48 positive vs. 7
negative predictions). Accuracy measures on their own fail to detect this
situation and give the false impression of above-chance generalizability.

The difference between accuracies and balanced accuracies is further
illustrated in Figure 3.5. Based on the confusion matrix C2, the two plots
show all of the statistics mentioned in Sections 3.1 and 3.2 superimposed on
the central 95% probability interval of the respective posterior distributions.
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Figure 3.5: Comparison between the posterior distribution of the accuracy
and the balanced accuracy. Posterior densities are based on the confusion matrix C2
depicted in Figure 3.4.

The figure also contains the sample balanced accuracy, computed as the
mean of the modes of the accuracies on positive and negative examples.
The simulation shows how a biased classifier applied to an imbalanced test
set leads to a hugely optimistic estimate of generalizability when measured
in terms of the accuracy rather than the balanced accuracy.

3.3 Discussion
In binary classification, confusion matrices form the basis of a multitude
of informative measures of generalizability. Yet, it is still common to aver-
age accuracies across cross-validation folds. This approach neither supports
meaningful confidence intervals; nor does it provide safeguards against a
biased classifier that has taken advantage of an imbalanced test set. The
first limitation can be overcome by the well-known approach of consider-
ing the full posterior distribution of the accuracy instead of a point esti-
mate (Bishop, 2007, pp. 68–74); and the second one by the idea of replacing
conventional accuracies by balanced accuracies.

Throughout this chapter, we have made no distinction between individ-
ual classifiers on the one hand and classification algorithms on the other,
since the idea of considering the posterior distribution of the balanced accu-
racy applies to either. The only way in which the two cases differ is whether
we look at the confusion matrix that results from a single train/test cycle
(yielding the posterior of the balanced accuracy of an individual classifier)
or whether we sum the confusion matrices across all cross-validation folds
(leading to the posterior of the algorithm as a whole). In most practical ap-
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plications, it is the generalizability of the algorithm that will be of primary
interest. The approach can therefore be used for any number of underly-
ing cross-validation folds: it solely requires the overall confusion matrix, as
obtained by summing individual confusion matrices across all folds.

An interesting generalization is the notion of balancing not only class
labels themselves but also other variables that correlate with class labels.
This reweighting is important, for instance, in the case of a test set with
balanced class labels in which another binary variable, closely correlated
with class labels, is imbalanced. A biased classifier could then falsely sug-
gest high generalizability while, in fact, it has learnt to separate examples
according to the additional variable rather than according to the original
class labels. It could be instrumental to investigate (i) how resampling and
cost-modification techniques could be used to efficiently deal with several
criteria, and (ii) whether (multiply) balanced accuracies might again prove
useful in reporting generalizability in a way that is safeguarded against op-
timistic accuracy estimates.

One important limitation remains: so far, we have considered data from
a single subject only, disregarding the variability that there might exist in
the population. In the next chapter, we will therefore examine how the
Bayesian approach described here can be extended to a mixed-effects ana-
lysis that accounts for both within-subjects and between-subjects variability
in classification performance.



Chapter 4

Mixed-effects inference on
classification performance

Classification algorithms are frequently used on data with a natural hier-
archical structure. For instance, classifiers are often trained and tested on
trial-wise measurements, separately for each subject within a group. The
classification analyses considered in the previous chapter, by contrast, were
‘flat,’ in the sense that they did not reflect a hierarchical structure.

An important question in hierarchical analyses is how classification out-
comes observed in individual subjects can be generalized to the population
from which the group was sampled. To address this question, this chap-
ter introduces novel statistical models that are guided by three desiderata.
First, all models explicitly respect the hierarchical nature of the data, that
is, they are mixed-effects models that simultaneously account for within-
subjects (fixed-effects) and across-subjects (random-effects) variance compo-
nents. Second, maximum-likelihood estimation is replaced by full Bayesian
inference in order to enable natural regularization of the estimation prob-
lem and to afford conclusions in terms of posterior probability statements.
Third, inference on classification accuracy is complemented by inference on
the balanced accuracy, which avoids inflated accuracy estimates for imbal-
anced datasets.

We introduce hierarchical models that satisfy these criteria and demon-
strate their advantages over conventional methods using both Markov chain
Monte Carlo (MCMC) and variational Bayes (VB) implementations for
model inversion and model selection. We illustrate the strengths of these

57
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methods using both synthetic and empirical fMRI data. Corresponding pub-
lications are Brodersen, Mathys et al. (in press) for model inversion using
MCMC; and Brodersen, Daunizeau et al. (under review) for a subsequent
variational Bayesian treatment.

4.1 Hierarchical analyses and mixed-effects
inference

Classification algorithms are frequently applied to data whose underlying
structure is hierarchical (as defined in the next paragraph; Figure 4.1). One
example is the domain of brain-machine interfaces, where classifiers are used
to decode intentions and decisions from trial-wise measurements of neuronal
activity in individual subjects (Sitaram et al., 2008; Blankertz et al., 2011).
Another example is spam detection, where a classifier is trained separately
for each user to predict content classes from high-dimensional document
signatures (Cormack, 2008). A third example is the field of neuroimaging,
where classifiers are used to relate subject-specific multivariate measures of
brain activity to a particular cognitive or perceptual state (Cox and Savoy,
2003; Haynes and Rees, 2006; Norman et al., 2006; Tong and Pratte, 2012).

In all of these scenarios, the data have a two-level structure: they com-
prise n experimental trials (or e-mails, or brain scans) collected from each
member of a group of m subjects (or users, or patients). For each subject,
the classifier is trained and tested on separate partitions of trial-specific
data. This procedure gives rise to a set of true labels and a set of predicted
labels, separately for each subject within the group. The typical question of
interest for studies as those described above is: what is the accuracy of the
classifier in the general population from which the subjects were sampled?
This chapter is concerned with such group-level inference on classification
accuracy for hierarchically structured data.

In contrast to a large literature on evaluating classification performance
in non-hierarchical applications of classification (see Langford, 2005, for a
review), relatively little attention has been devoted to evaluating classifi-
cation algorithms in hierarchical (i.e., group) settings (but see Goldstein,
2010; Olivetti et al., 2012).

This is unfortunate since a broadly accepted standard would be highly
beneficial. Rather than treating classification outcomes obtained in differ-
ent subjects as samples from the same distribution, a hierarchical setting
requires us to account for the fact that each subject itself has been sam-
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Figure 4.1: Hierarchical trial-by-trial classification. When classifying trials in
individual subjects from a group, we must account for uncertainty at the within-subjects
and the between-subjects level. This can be achieved using a hierarchical model which
we will invert using two different approaches to approximate Bayesian inference: Markov
chain Monte Carlo and variational Bayes.

pled from a heterogeneous population (Beckmann et al., 2003; Friston et al.,
2005).

Thus, a standard approach to evaluating classification performance should
account for two independent sources of uncertainty: fixed-effects variance
(i.e., within-subjects variability) that results from uncertainty about the
true classification accuracy in any given subject; and random-effects vari-
ance (i.e., between-subjects variability) that results from the distribution of
true accuracies in the population from which subjects were drawn. Taking
into account both types of uncertainty requires mixed-effects inference. This
is a central theme of the models discussed in this chapter.

Conventional approaches. There are several common approaches to
performance evaluation in hierarchical classification studies (Figure 4.2).1
One approach rests on the pooled sample accuracy, i.e., the number of cor-

1This thesis focuses on parametric models for performance evaluation. Nonparametric
methods, in particular permutation tests, are not considered in detail here.
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Figure 4.2: Approaches to inference on classification performance. Different
approaches to inference can be distinguished on the basis of the sources of uncertainty
they account for. Fixed-effects and random-effects approaches are suboptimal for group
studies since they disregard between-subjects or within-subjects uncertainty, respectively.
Mixed-effects models, by contrast, account for both sources of uncertainty and appropri-
ately constrain inferences at the subject and group level.

rectly predicted trials divided by the number of trials in total, across all
subjects. The statistical significance of the pooled sample accuracy can
be assessed using a simple classical binomial test (assuming the standard
case of binary classification) that is based on the likelihood of obtaining the
observed number of correct trials (or more) by chance (Langford, 2005).

A second approach, more commonly used, is to consider subject-specific
sample accuracies and estimate their distribution in the population. This
method typically (explicitly or implicitly) uses a classical one-tailed t-test
across subjects to assess whether the population mean accuracy is greater
than what would be expected by chance (e.g., Harrison and Tong, 2009;
Krajbich et al., 2009; Knops et al., 2009; Schurger et al., 2010).

In the case of single-subject studies, the first method (i.e., a binomial
test on the pooled sample accuracy) is an appropriate approach (although
see Chapter 3 for a more flexible Bayesian treatment). However, there are
three reasons why neither method is optimal for group studies.

Firstly, both of the above methods neglect the hierarchical nature of the
experiment. The first method (based on the pooled sample accuracy) rep-
resents a fixed-effects approach and disregards variability across subjects.
This leads to severely overoptimistic inferences. The second method (t-test
on sample accuracies) does consider random effects; but it neither explic-
itly models the uncertainty associated with subject-specific accuracies, nor
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does it account for their inherent violations of homoscedasticity (i.e., the
differences in variance of the data between subjects).

The second limitation inherent in the above methods is rooted in their
distributional assumptions. It is ill-justified to assume sample accuracies to
follow a Gaussian distribution (which, in this particular case, is the implicit
assumption of a classical t-test on sample accuracies). This is because a
Gaussian has infinite support, which means it inevitably places probability
mass on values below 0% and above 100% (for an alternative, see Dixon,
2008).

A third problematic characteristic of (though not intrinsic to) the above
conventional methods is a consequence of their focus on classification accu-
racy, which is known to be a poor indicator of performance when classes are
not perfectly balanced. Specifically, a classifier trained on an imbalanced
dataset may acquire a bias in favour of the majority class, resulting in an
overoptimistic accuracy (Chawla et al., 2002; Japkowicz and Stephen, 2002;
Akbani et al., 2004; Wood et al., 2007; Zhang and Lee, 2008; Demirci et al.,
2008; Brodersen et al., 2010a). This motivates the use of an alternative
performance measure, the balanced accuracy, which removes this bias from
performance evaluation.

Bayesian mixed-effects inference. This chapter introduces hierarchi-
cal models which implement full Bayesian mixed-effects analyses of classifi-
cation performance that can flexibly deal with different performance mea-
sures.2 These models overcome the limitations of the ritualized approaches
described above: First, the models introduced here explicitly represent the
hierarchical structure of the data, simultaneously accounting for fixed-effects
and random-effects variance components. Second, maximum-likelihood es-
timation is replaced by a Bayesian framework which enables regularized
estimation and model selection with conclusions in terms of posterior prob-
ability statements. Third, our approach permits inference on both the ac-
curacy and the balanced accuracy, a performance measure that avoids bias
when working with imbalanced datasets.

It is worth highlighting that the above considerations correspond closely
to those that drove the development of mixed-effects models and Bayesian
estimation approaches in other domains of analysis. One example are mass-
univariate fMRI analyses based on the general linear model (GLM), where

2All models discussed in this chapter have been implemented in MATLAB and can
be downloaded from: http://mloss.org/software/view/407/. An R package is currently
in preparation.
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early fixed-effects models were soon replaced by random-effects and full
mixed-effects approaches that have become a standard in the field (Holmes
and Friston, 1998; Friston et al., 1999; Beckmann et al., 2003; Woolrich
et al., 2004; Friston et al., 2005; Mumford and Nichols, 2009).

Another example are group analyses on the basis of DCM (Friston et al.,
2003), where fixed-effects inference has been supplemented by random-
effects inference that is more appropriate when different models are optimal
in characterizing different subjects in a group (Stephan et al., 2009a). The
present study addresses the same issues, but in a new context, that is, in
group analyses based on trial-by-trial classification. We will revisit this
point in Section 4.8 on p. 122.

Overview. This chapter is organized as follows. We begin by briefly re-
viewing classical approaches to inference in two-level designs (Section 4.2).
We then describe both existing and novel models for inferring on the ac-
curacy and the balanced accuracy using stochastic approximate inference,
i.e., sampling (Sections 4.3 and 4.4). Following this, we describe models
for which we derive a computationally more efficient variational Bayes ap-
proximation (Sections 4.5 and 4.6). Illustrative applications of these models
on both synthetic and empirical data are provided throughout the chapter
(and in particular in Section 4.7). Finally, we review the key characteristics
of our models and their inversion strategies and discuss their role in future
classification studies (Section 4.8).

4.2 Classical inference in a group study
In a hierarchical setting, group-level inference frequently proceeds by ap-
plying a one-sample, one-tailed t-test to subject-specific sample accuracies.3
This test evaluates the null hypothesis that subject-specific accuracies are
drawn from a distribution with a mean at chance level, using the t-statistic

√
m
π̄ − π0

σ̂m−1
∼ tm−1, (4.2.1)

3This chapter focuses on those classical procedures that are widely used in applica-
tion domains such as neuroimaging and brain-machine interfaces. However, it is worth
noting that alternative maximum-likelihood procedures exist that eschew the normality
assumption implicit in a classical t-test (e.g., Dixon, 2008). We will revisit this point in
Section 4.8.
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where π̄ and σ̂m−1 are the sample mean and sample standard deviation of
subject-specific sample accuracies, π0 is the accuracy at chance (e.g., 0.5 for
binary classification), and tm−1 is Student’s t-distribution on m− 1 degrees
of freedom.

Additionally, it is common practice to indicate the uncertainty about
the population mean of the classification accuracy by reporting the 95%
confidence interval [

π̄ ± t0.025,m−1 ×
σ̂m−1√
m

]
, (4.2.2)

where t0.025,m−1 is a quantile from the t-distribution. It is worth empha-
sizing that this confidence interval has a merely illustrative purpose. This
is because a central interval corresponds to a two-tailed test, whereas the
t-test above is one-tailed. Thus, a confidence-interval test actually has a
false positive rate of α/2 = 0.025. Similarly, under the null distribution,
the 95% confidence interval will lie entirely below 0.5 in 2.5% of the cases.
In a classical framework, one would have to call this ‘significant,’ in the
sense of the classifier operating below chance. However, this is not the hy-
pothesis one would typically want to test. Rather, we should formulate a
one-tailed test. In a Bayesian setting, this can be achieved by quantifying
the (posterior) probability that the true accuracy is above (alternatively:
below) chance.

The differences between the classical procedure and the full Bayesian
approach discussed earlier can be best understood by considering their re-
spective assumptions. The distributional assumption underlying both the
t-statistic in (4.2.1) and the confidence interval in (4.2.2) is that the sample
mean of the subject-wise accuracies, under the null hypothesis, is normally
distributed,

π̄ ∼ N
(
π̄

∣∣∣∣ µ, σ√
m

)
, (4.2.3)

where the population standard deviation σ has been estimated by the sample
standard deviation σ̂m−1. The corresponding graphical model is shown in
Figure 4.3a.

As touched upon in Section 4.1, this analysis is popular but suffers from
two faults that are remedied by our Bayesian treatment.4 First, accuracies

4For a classical mixed-effects approach, see Section 4.8.
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Figure 4.3: Models for inference on classification accuracies. This illustration
shows graphical representations of different models for classical and Bayesian inference on
classification accuracies, as discussed in Sections 4.3.1 and 4.4.1. Blank circles correspond
to latent variables, filled circles represent observed data.

are confined to the [0, 1] interval, but are modelled by a normal distribu-
tion with infinite support. Consequently, error bars based on confidence
intervals (4.2.2) may well include values above 1 (see Figure 4.6c for an ex-
ample). By contrast, the Beta distribution used in the Bayesian approach
has the desired [0, 1] support and thus represents a more natural candidate
distribution.

Second, a t-test on sample accuracies as in (4.2.3) neither explicitly ac-
counts for within-subjects uncertainty nor for violations of homoscedasticity.
This is because it uses sample accuracies as summary statistics, treating
them as infinitely precise observations, without carrying forward the uncer-
tainty associated with them (cf. Mumford and Nichols, 2009). For example,
no distinction is made between an accuracy of 80% that was obtained as
80 correct out of 100 trials (i.e., an estimate with high confidence) and the
same accuracy obtained as 8 out of 10 trials (i.e., an estimate with low
confidence). In fact, no distinction regarding the confidence in the inference
is being made between 80 correct out of 100 trials (i.e., high confidence)
and 50 correct out of 100 trials (lower confidence, since the variance of a
binomial distribution depends on its mean and becomes maximal at a mean
of 0.5).

In summary, classifier performance cannot be observed directly; it must
be inferred. While the classical model above does allow for inference on
random-effects (between-subjects) variability, it does not explicitly account
for fixed-effects (within-subject) uncertainty. This uncertainty is only taken
into account indirectly by its influence on the variance of the observed sam-
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ple accuracies.
With regard to subject-specific accuracies, one might be tempted to

use π̂j = kj/nj as individual estimates. However, in contrast to Bayesian
inference on subject-specific accuracies (see Section 4.3.1), individual sample
accuracies do not take into account the moderating influence provided by
knowledge about the group (i.e., ‘shrinkage’). An effectively similar outcome
is found in classical inference using the James-Stein estimator (James and
Stein, 1961, see Appendix A1.2).

4.3 Stochastic Bayesian inference
on the accuracy

As described above, in a hierarchical setting, a classifier predicts the class la-
bel of each of n trials, separately for each subject from a group. This setting
raises three principal questions. First, what is the classification accuracy
at the group level? This is addressed by inference on the mean classifica-
tion accuracy in the population from which subjects were drawn. Second,
what is the classification accuracy in each individual subject? Addressing
this question by considering each subject in turn is possible but potentially
wasteful, since within-subject inference may benefit from across-subject in-
ference (Efron and Morris, 1971). Third, which of several classification
algorithms is best? This question can be answered by estimating how well
an algorithm’s classification performance generalizes to new data.

This section considers different models for answering these questions.
To keep the chapter self-contained, we initially review the well-known beta-
binomial model (Pearson, 1925; Skellam, 1948; Lee and Sabavala, 1987).
We also describe the normal-binomial model, which will later prove useful
for our variational treatment. This introduces most of the concepts we
require for subsequently introducing two new models designed to support
hierarchical Bayesian inference on the balanced accuracy: the twofold beta-
binomial model and the bivariate normal-binomial model.

4.3.1 The beta-binomial model
In a hierarchical classification study, classification is carried out separately
for each subject within a group, hence the available data are kj out of nj
correct predictions for each subject j = 1 . . .m. At the level of individual
subjects, for each subject j, the number of correctly classified trials kj can
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be modelled as

p(kj | πj , nj) = Bin(kj | πj , nj) (4.3.1)

=
(
nj
kj

)
π
kj
j (1− πj)nj−kj , (4.3.2)

where nj is the total number of trials in subject j, and πj represents the
fixed but unknown accuracy that the classification algorithm achieves on
that subject.5 At the group level, the model must account for variability
across subjects. This is achieved by modelling subject-wise accuracies as
drawn from a population distribution described by a Beta density,

p(πj | α, β) = Beta(πj | α, β) (4.3.3)

= Γ(α+ β)
Γ(α)Γ(β)π

α−1
j (1− πj)β−1, (4.3.4)

such that α and β characterize the population as a whole. This step is
formally identical with the Beta prior placed on the accuracy in (3.1.9)
on p. 47 where it represented our subjective uncertainty about π before
observing the outcome k. Here, (4.3.4) states that uncertainty about any
particular subject is best quantified by our knowledge about variability in
the population, i.e., the distribution of πj over subjects (which, as described
below, can be learnt from the data). Formally, subject-specific accuracies
are assumed to be i.i.d., conditional on the population parameters α and β.

To describe our uncertainty about the population parameters them-
selves, we use a diffuse prior on α and β which ensures that the posterior will
be dominated by the data. One option would be to assign uniform densities
to both the prior expected accuracy α/(α+β) and the prior virtual sample
size α+ β, using logistic and logarithmic transformations to put each on a
(−∞,∞) scale; but this prior would lead to an improper posterior density
(Gelman et al., 2003). An alternative is to put a uniform density on the
prior expected accuracy α/(α+β) and the inverse root of the virtual sample
size (α + β)−1/2 (Gelman et al., 2003). This combination corresponds to
the prior

p(α, β) ∝ (α+ β)−5/2 (4.3.5)

on the natural scale. However, although this prior leads to a proper posterior
density, it is improper itself and thus prevents computation of the model

5Note that our notation will suppress nj unless this introduces ambiguity.
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evidence, i.e., the marginal likelihood of the data given the model, which will
later become important for model comparison. We resolve this limitation
by using a proper (i.e., integrable and normalized) variant,

p(α, β) = 3
4(α+ β + 1)−5/2 (4.3.6)

which represents a special case of the generalization of (4.3.5) proposed by
Everson and Bradlow (2002). The positive constant (here: +1) ensures
integrability. This prior can be rewritten in an unnormalized (as indicated
by a tilde), reparameterized form as

p̃

(
ln
(
α

β

)
, ln (α+ β)

)
= αβ(α+ β + 1)−5/2, (4.3.7)

which will be useful in the context of model inversion (Gelman et al., 2003).
Two equivalent graphical representations of this model (using the formalism
of Bayesian networks; Jensen and Nielsen, 2007) are shown in Figures 4.3a
and 4.3b.

4.3.2 Stochastic approximate inference
Inverting the beta-binomial model allows us to infer on (i) the posterior
population mean accuracy, (ii) the subject-specific posterior accuracies, and
(iii) the posterior predictive accuracy. We propose a numerical procedure
for model inversion (Appendix A.1) which we briefly summarize below.

First, to obtain the posterior density over the population parameters α
and β we need to evaluate

p(α, β | k1:m) = p(k1:m | α, β) p(α, β)∫∫
p(k1:m | α, β) p(α, β) dα dβ

(4.3.8)

with k1:m := (k1, k2, . . . , km). Under conditional i.i.d. assumptions about
subject-specific accuracies πj we obtain the likelihood function

p(k1:m | α, β) =
m∏
j=1

∫
p(kj | πj) p(πj | α, β) dπj (4.3.9)

=
m∏
j=1

Bb(kj | α, β), (4.3.10)
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where Bb(·) denotes the beta-binomial distribution. Since the integral on
the right-hand side of (4.3.8) cannot be evaluated in closed form, we resort
to a Markov chain Monte Carlo (MCMC) procedure. Specifically, we use a
Metropolis algorithm (Metropolis and Ulam, 1949; Metropolis et al., 1953)
to sample from the variables at the top level of the model and obtain a set
{(α(τ), β(τ))} for τ = 1 . . . c. This set allows us to obtain samples from the
posterior population mean accuracy,

p

(
α

α+ β

∣∣∣∣ k1:m

)
. (4.3.11)

We can use these samples in various ways, for example, to obtain a point
estimate of the population mean accuracy using the posterior mean,

1
c

c∑
τ=1

α(τ)

α(τ) + β(τ) . (4.3.12)

We could also numerically evaluate the posterior probability that the mean
classification accuracy in the population does not exceed chance,

p = P

(
α

α+ β
≤ 0.5

∣∣∣∣ k1:m

)
(4.3.13)

which can be viewed as a Bayesian analogue of a classical p-value. We refer
to this quantity as the (posterior) infraliminal probability of the classifier. It
lives on the same [0, 1] scale as a classical p-value, but has a more intuitive
(and less error-prone) interpretation: rather than denoting the (frequen-
tist) probability of observing the data (or more extreme data) under the
‘null hypothesis’ of a chance classifier (classical p-value), the infraliminal
probability represents the (posterior) belief that the classifier operates at or
below chance. We will revisit this aspect in Section 4.8.

Finally, we could compute the posterior probability that the mean ac-
curacy in one population is greater than in another,

P

(
α(1)

α(1) + β(1) >
α(2)

(α(2) + β(2))

∣∣∣∣ k1:m(1) , k1:m(2)

)
. (4.3.14)

The second question of interest concerns the classification accuracies in indi-
vidual subjects. Specifically, we wish to infer on p(πj | k1:m) to characterize
our posterior uncertainty about the true classification accuracy in subject



Stochastic Bayesian inference on the accuracy 69

j. Given a pair of samples (α(τ), β(τ)), we can obtain samples from subject-
specific posteriors simply by drawing from

Beta
(
π

(τ)
j

∣∣∣ α(τ) + kj , β
(τ) + nj − kj

)
. (4.3.15)

Because samples for α and β are influenced by data k1 . . . km from the entire
group, so are the samples for πj . In other words, each subject’s individual
posterior accuracy is informed by what we have learnt about the group as a
whole, an effect known as shrinking to the population. It ensures that each
subject’s posterior mean lies between its sample accuracy and the group
mean. Subjects with fewer trials will exert a smaller effect on the group
and shrink more, while subjects with more trials will have a larger influence
on the group and shrink less.

The third question of interest is how one classifier compares to another.
To address this, we must assess how well the observed performance gener-
alizes across subjects. In this case, we are typically less interested in the
average effect in the group and more in the effect that a new subject from the
same population would display, as this estimate takes into account both the
population mean and the population variance. The expected performance
is expressed by the posterior predictive density,

p(π̃ | k1:m), (4.3.16)

in which π̃ denotes the classification accuracy in a new subject drawn from
the same population as the existing group of subjects with latent accuracies
π1, . . . , πm (cf. Figure 4.3b).6 Samples for this density can be easily obtained
using the samples α(τ) and β(τ) from the posterior population mean.7

The computational complexity of a full Bayesian approach can be dimin-
ished by resorting to an empirical Bayes approximation (Deely and Lindley,
1981). This approach, however, comes with conceptual limitations and is
not without criticism (Robert, 2007). Here, we will keep our treatment fully
Bayesian.

6The term ‘posterior predictive density’ is sometimes exclusively used for densities
over variables that are unobserved but are observable in principle. Here, we use the
term to refer to the posterior density of any unobserved variable, whether observable in
principle (such as k̃) or not (such as π̃).

7If data were indeed obtained from a new subject (represented in terms of k̃ correct
predictions in ñ trials), then p(π̃ | k1:m, n1:m) would be used as a prior to compute the
posterior p(π̃ | k̃, ñ, k1:m, n1:m).
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4.3.3 Applications
This section begins to illustrate the practical utility of the Bayesian ap-
proach discussed in the previous section and compares it to inference ob-
tained through classical (frequentist) statistics.

Inference on the population mean and the predictive accuracy

In a first experiment, we simulated classification outcomes for a group of 20
subjects with 100 trials each (50 trials with a positive and 50 with a negative
hidden true class label). Outcomes were generated using the beta-binomial
model with a population mean of 0.8 and a population variance of 0.01 (i.e.,
α = 12 and β = 3 for both positive and negative labels, corresponding to a
population standard deviation of 0.1; Figure 4.4).

Raw data, i.e., the number of correct predictions within each subject,
are shown in Figure 4.4a. Their empirical sample accuracies are shown in
Figure 4.4b, along with the ground-truth density of the population accu-
racy. Inverting the beta-binomial model, using the MCMC procedure of
Section 4.3.1 (Figure 4.4c), and examining the posterior distribution over
the population mean accuracy showed that more than 99.9% of its mass was
above 50%, in agreement with the fact that the true population mean was
above chance (Figure 4.4d).

We also used this simulation to illustrate the differences between a
Bayesian mixed-effects central 95% posterior probability interval, a fixed-
effects probability interval, and a random-effects confidence interval (Fig-
ure 4.4e). All three schemes arrive at the same conclusion with respect
to the population mean being above chance. However, while the random-
effects interval (red) is very similar to the proposed mixed-effects interval
(black), the fixed-effects interval (yellow) displays too small a variance as it
disregards the important between-subjects variability.

We finally considered the predictive posterior distribution over the accu-
racy that would be observed if we were to acquire data from a new subject
(Figure 4.4f). This posterior did not allow for the conclusion that, with a
probability larger than 0.95, the accuracy in a new subject would be above
chance. This result is driven by the large heterogeneity in the population,
inducing a dispersed predictive density. Importantly, the dispersion of the
predictive density would not vanish even in the limit of an infinite number
of subjects. This is in contrast to the dispersion of the posterior over the
population mean, which becomes more and more precise with an increasing
amount of data.
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Figure 4.4: Inference on the population mean and the predictive accuracy.
(a) Classification outcomes were generated for 20 subjects using the beta-binomial model.
Each subject is fully characterized by the number of correctly classified trials (black) out
of a given set of 100 trials (grey). (b) Empirical sample accuracies (blue) and their
underlying population distribution (green). (c) Inverting the beta-binomial model yields
samples from the posterior distribution over the population parameters, visualized using
a nonparametric (bivariate Gaussian kernel) density estimate (contour lines). (d) The
posterior about the population mean accuracy, plotted using a kernel density estimator
(black), is sharply peaked around the true population mean (green). The upper 95% of the
probability mass are shaded (grey). Because the lower bound of the shaded area is greater
than 0.5, the population mean can be concluded to be above chance. (e) While the central
95% posterior interval (black) and the classical 95% confidence interval (red) look similar,
the two intervals are conceptually very different. The fixed-effects interval (orange) is
overly optimistic as it disregards between-subjects variability. (f) The posterior predictive
distribution over π̃ represents the posterior belief of the accuracy expected in a new
subject (black). Its dispersion reflects irreducible population heterogeneity.

Inference was based on 100 000 samples, generated using 8 parallel chains.
We used several standard approaches to convergence evaluation. In partic-
ular, we considered trace plots for visual inspection of mixing behaviour
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and convergence to the target distributions. In addition, we monitored the
average ratio of within-chain variance to between-chain variance, which was
bigger than 0.995. In other words, the variances of samples within and be-
tween chains were practically indistinguishable. The Metropolis rejection
rate was 0.475, thus ensuring an appropriate balance between exploration
(of regions with a lower density) and exploitation (of regions with a higher
density). Finally, we assessed the uncertainty inherent in MCMC-based
quantities such as log Bayes factors by computing standard deviations across
repetitions, which led us to use 105 or 106 samples for each computation
(see Section 4.4.6). All subsequent applications were based on the same
algorithmic settings.

In frequentist inference, a common way of representing the statistical
properties of a test is to estimate the probability of rejecting the null hy-
pothesis at a fixed threshold (e.g., 0.05) under different regimes of ground
truth, which leads to the concept of power curves. Here, we adopted this
frequentist perspective to illustrate the properties of Bayesian mixed-effects
inference on classification performance (Figure 4.5).

Specifying a true population mean of 0.5 and variance of 0.001 (standard
deviation 0.0316), we generated classification outcomes, in the same way as
above, for a synthetic group of 20 subjects with 100 trials each. Inverting
the beta-binomial model, we inferred whether the population mean was
above chance by requiring more than 95% of the posterior probability mass
of the population mean to be greater than 0.5, that is, by requiring an
infraliminal probability of less than 5%. We repeated this process 1 000
times and counted how many times the population mean was deemed greater
than chance. We then varied the true population mean and plotted the
fraction of decisions for an above-chance classifier as a function of population
mean (Figure 4.5a). At a population mean of 0.5, the vertical distance
between the data points and 1 represents the empirical specificity of the
test (which was designed to be 1 − α = 0.95). At population means above
0.5, the data points show the empirical sensitivity of the test, which grows
rapidly with increasing population mean. In this setting, the inferences that
one would obtain by a frequentist t-test (red) are in excellent agreement
with those afforded by the proposed beta-binomial model (black). Since the
population variance was chosen to be very low in this initial simulation, the
inferences afforded by a fixed-effects analysis (yellow) prove very similar as
well; but this behaviour changes drastically when increasing the population
variance to more realistic levels, as described below.

One important issue in empirical studies is the heterogeneity of the pop-
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Figure 4.5: Inference on the population mean under varying population het-
erogeneity. The figure shows Bayesian estimates of the frequentist probability of above-
chance classification performance, as a function of the true population mean, separately
for three different level of population heterogeneity (a,b,c). Each data point is based on
1 000 simulations, each of which used 10 000 samples from every subject-specific posterior
to make a decision. The figure shows that, in this setting, frequentist inference based on
t-tests (red) agrees with Bayesian inference based on the beta-binomial model (black).
By contrast, a fixed-effects approach (orange) offers invalid population inference as it
disregards between-subjects variability; at a true population mean of 0.5, the hypothesis
of chance-level performance is rejected more frequently than prescribed by the test size.
Each data point is plotted in terms of the fraction of above-chance conclusions and a 95%
central posterior interval, based on a Beta model with a flat prior. Points are joined by
a sigmoidal function that was constrained to start at 0 and end at 1, with two remaining
degrees of freedom. The insets show the distribution of the true underlying population
accuracy (green) for a population mean accuracy of 0.8. Where the true population mean
exceeds 0.5, the graphs reflect the empirical sensitivity of the inference scheme. Its em-
pirical specificity corresponds to the vertical distance between the graphs and 1 at the
point where the population mean is 0.5.

ulation. We studied the effects of population variance by repeating the
above simulations with different variances (Figures 4.5b,c). As expected,
an increase in population variance reduced statistical sensitivity. For ex-
ample, given a fairly homogeneous population with a true population mean
accuracy of 60% and a variance of 0.001 (standard deviation 0.0316; Fig-
ure 4.5a), we can expect to correctly infer above-chance performance in
more than 99.99% of all cases. By contrast, given a more heterogeneous
population with a variance of 0.05 (standard deviation ≈ 0.22), the frac-
tion of correct conclusions drops to 61%; in all other cases we would fail to
recognize that the classifier was performing better than chance.

The above simulations show that a fixed-effects analysis (yellow) be-
comes an invalid procedure to infer on the population mean when the pop-
ulation variance is non-negligible. In more than the prescribed 5% of sim-
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Figure 4.6: Inadequate inferences provided by fixed-effects and random-
effects models. (a) The simulation underlying this figure represents the case of a
small heteroscedastic group with varying numbers of trials across subjects. Classification
outcomes were generated in the same way as in the simulation underlying Figure 4.5a.
(b) The (mixed-effects) posterior density of the population mean (black) provides a good
estimate of ground truth (green). (c) A central 95% posterior probability interval, based
on the density shown in (b), comfortably includes ground truth. By contrast, a fixed-
effects interval (orange) is overoptimistic as it disregards between-subjects variability.
The corresponding random-effects confidence interval (red) is similar to the mixed-effects
interval but lacks asymmetry, thus inappropriately including accuracies above 100%.

ulations with a true population mean of 0.5, the procedure concluded that
the population mean was above chance. This is because a fixed-effects ana-
lysis yields too small variances on the population mean and therefore too
easily makes above-chance conclusions.

All above simulations were based on a group of 20 subjects with 100
trials each, emulating a setting as it frequently occurs in practice, e.g., in
neuroimaging data analyses. We repeated the same analysis as above on a
sample dataset from a second simulation setting (Figure 4.6). This setting
was designed to represent the example of a small heterogeneous group with
varying numbers of trials across subjects. Specifically, we generated data for
8 subjects, half of which had 20 trials, and half of which had only 5 trials.
Classification outcomes were generated using the beta-binomial model with
a population mean of 0.85 and a population variance of 0.02 (corresponding
to a population standard deviation of 0.14; Figure 4.6a).

The example shows that the proposed beta-binomial model yields a pos-
terior density with the necessary asymmetry; it comfortably includes the
true population mean (Figure 4.6b). By contrast, the fixed-effects proba-
bility interval (based on a Beta density) is overly optimistic. Finally, the
random-effects confidence interval is similar to the mixed-effects interval
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but lacks the necessary asymmetry, including accuracies above 100% (Fig-
ure 4.6c).

Inference on subject-specific accuracies

In the beta-binomial model, classification accuracies of individual subjects
are represented by a set of latent variables π1, . . . , πm. A consequence of
hierarchical Bayesian inference is that such subject-specific variables are
informed by data from the entire group. Effectively, they are shrunk to the
group mean, where the amount of shrinkage depends on the subject-specific
posterior uncertainty.

To illustrate this, we generated synthetic classification outcomes and
computed subject-specific posterior inferences (Figure 4.7). This simula-
tion was based on 45 subjects overall; 40 subjects were characterized by a
relatively moderate number of trials (n = 20) while 5 subjects had even
fewer trials (n = 5). The population accuracy had a mean of 0.8 and a
variance of 0.01 (standard deviation 0.1). Using this dataset, we computed
subject-specific central 95% posterior probability intervals and sorted them
in ascending order by subject-specific sample accuracy (Figure 4.7a). The
plot shows that, in each subject, the posterior mode (black) represents a
compromise between the observed sample accuracy (blue) and the popu-
lation mean (0.8). This compromise in turn provides a better estimate of
ground truth (green) than sample accuracies by themselves. This effect
demonstrates a key difference between the two types of inference: subject-
specific posteriors are informed by data from the entire group, whereas
sample accuracies are based on the data from an individual subject.

Another way of demonstrating the shrinkage effect is by illustrating the
transition from ground truth to sample accuracies (with its increase in dis-
persion) and from sample accuracies to posterior means (with its decrease
in dispersion). This shows how the high variability in sample accuracies
is reduced, informed by what has been learned about the population (Fig-
ure 4.7b). Notably, because the amount of shrinking depends on each sub-
ject’s posterior uncertainty, the shrinking effect may modify the order of
subjects, as indicated by crossing lines. Here, subjects with only 5 trials
were shrunk more than subjects with 20 trials.

In a next step, we examined power curves, systematically changing the
true population accuracy and repeating the above simulation 1 000 times
(Figure 4.7c). Within a given simulation, we concluded that a subject-
specific accuracy was above chance if more than 95% of its posterior prob-
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Figure 4.7: Inference on subject-specific accuracies. (a) Classification outcomes
for a synthetic heterogeneous group of 45 subjects. The figure shows subject-specific pos-
terior means and central 95% credible intervals (black), sample accuracies (blue if based
on 20 trials, red if based on 5 trials), and true subject-specific accuracies (green) as a
function of subject index, sorted in ascending order by sample accuracy. Due to the hier-
archical model, Bayesian posterior intervals are shrunk to the population. (b) Alternative
visualization of the shrinkage effect. Shrinking changes the order of subjects (when sorted
by posterior mean as opposed to by sample accuracy) as the amount of shrinking depends
on the subject-specific (first-level) posterior uncertainty. Subjects with just 5 trials (red)
are shrunk more than subjects with 20 trials (blue). (c) Based on 1 000 simulations, the
plot shows the fraction of simulations in which a subject’s accuracy was concluded to
be above chance, based on a Bayesian posterior interval (black) or a frequentist t-test
(red). In contrast to classical inference, the Bayesian procedure incorporates a desirable
shift towards the population in making decisions about individual group members. (d)
Across the same 1 000 simulations, a Bayes estimator, based on the posterior means of
subject-specific accuracies (black), was superior to both a classical ML estimator (blue)
and a James-Stein estimator (red).

ability mass was above 0.5. We binned subjects across all simulations into
groups of similar accuracies and plotted the fraction of above-chance deci-
sions against these true accuracies, contrasting the Bayesian model with a
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conventional t-test.
As shown in Figure 4.7c, t-tests falsely detected above-chance subject-

specific accuracies in about 5% of the cases, in agreement with the intended
test size. By contrast, our Bayesian scheme was considerably more sensitive
and detected above-chance accuracy in subjects whose true accuracy was
within a small bin around 0.5. This behaviour reflected the fact that the
Bayesian procedure incorporated what had been learned about the popula-
tion when deciding on individual subjects. That is, a population mean well
above chance (here: 0.8) made it more likely that individual subjects per-
formed above chance as well, even in the presence of a low sample accuracy.

In addition to enabling decisions that take into account information
about the group, the posterior distributions of subject-specific accuracies
also yield more precise point estimates. To illustrate this effect, we simu-
lated 1 000 datasets in the same way as above. Within each simulation, we
compared three different ways of obtaining an estimator for each subject’s
accuracy: (i) a Bayes estimator (posterior mean of the subject-specific ac-
curacy); (ii) a maximum-likelihood estimator (sample accuracy); and (iii) a
James-Stein estimator, with a similar shrinkage effect as the Bayes esti-
mator but less explicit distributional assumptions (Figure 4.7d). For each
estimator, we computed the mean squared error (or risk) across all subjects,
averaged across all simulations. We then repeated this process for different
population means. We found that the James-Stein estimator dominated the
ML estimator for low accuracies. However, both estimators were inferior to
the Bayes estimator which provided the lowest risk throughout.

4.4 Stochastic Bayesian inference
on the balanced accuracy

The beta-binomial model discussed in the previous section enables infer-
ence on the accuracy, which is known to be a problematic indicator of per-
formance when classes are not perfectly balanced. Here, we consider two
models for inference on the balanced accuracy, a more suitable indicator of
classification performance.

4.4.1 The twofold beta-binomial model
One way of inferring on the balanced accuracy φ is to duplicate the beta-
binomial model and apply it separately to the two classes (Figure 4.8a). In
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(a) Beta-binomial model 
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Figure 4.8: Models for inference on balanced classification accuracies. This
figure shows two models for Bayesian mixed-effects inference on the balanced accuracy, as
discussed in Sections 4.4.1 and 4.4.3. The models are based upon different assumptions
and parameterizations and can be compared by Bayesian model comparison.

other words, we consider the number of correctly predicted positive trials
k+ and the number of correctly predicted negative trials k−, and express
our uncertainty about φ (3.2.1) before and after observing k+ and k−. In
a single-subject setting, as in (3.1.9), we can place separate noninformative
Beta priors on π+ and π−,

p(π+ | α+
0 , β

+
0 ) = Beta(π+ | α+

0 , β
+
0 ),

p(π− | α−0 , β
−
0 ) = Beta(π− | α−0 , β

−
0 ), (4.4.1)

where α+
0 = β+

0 = α−0 = β−0 = 1. Inference on class-specific accuracies
π+ and π− could be achieved in exactly the same way as discussed in the
previous section. Here, however, we are primarily interested in the posterior
density of the balanced accuracy,

p(φ | k+, k−) = p

(
1
2(π+ + π−)

∣∣∣∣ k+, k−
)
. (4.4.2)

The balanced accuracy is thus a new random variable defined via two
existing random variables from our model, π+ and π−. Even in a single-
subject setting, a closed form for its posterior distribution is not available,
and so we must resort to a numerical approximation (cf. Section 3.2 on
p. 53).

In a group setting, we can expand the above model in precisely the same
way as for the simpler case of the classification accuracy in Section 4.3.1.
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Specifically, we define diffuse priors on the class-specific population param-
eters α+ and β+ as well as α− and β−, in analogy to (4.3.6). A graphical
representation of this model is shown in Figure 4.8a.

4.4.2 Stochastic approximate inference
Given that the twofold beta-binomial model consists of two independent
instances of the simple beta-binomial model considered in Section 4.3.1
(Figure 4.3b), statistical inference follows the same approach as described
previously (see Section 4.4.6 for an application). For instance, we can obtain
the posterior population parameters, p(α+, β+ | k+

1:m) and p(α−, β− | k−1:m)
using the same sampling procedure as summarized in Section 4.3.1, except
that we are now applying the procedure twice. The two sets of samples can
then be averaged in a pairwise fashion to obtain samples from the posterior
mean balanced accuracy in the population,

p
(
φ | k+

1:m, k
−
1:m
)
, (4.4.3)

where we have defined

φ := 1
2

(
α+

α+ + β+ + α−

α− + β−

)
. (4.4.4)

Similarly, we can average pairs of posterior samples from π+
j and π−j to

obtain samples from the posterior densities of subject-specific balanced ac-
curacies,

p
(
φj
∣∣ k+

1:m, k
−
1:m
)
. (4.4.5)

Using the same idea, we can obtain samples from the posterior predictive
density of the balanced accuracy that can be expected in a new subject from
the same population,

p
(
φ̃
∣∣ k+

1:m, k
−
1:m
)
. (4.4.6)

4.4.3 The bivariate normal-binomial model
In the previous section, we saw that the twofold beta-binomial model en-
ables mixed-effects inference on the balanced accuracy. However, it may
not always be optimal to treat accuracies on positive and negative trials
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separately (cf. Leonard, 1972). That is, if π+ and π− were related in some
way, the model should reflect this.

For example, one could imagine a group study in which some subjects
exhibit a more favourable signal-to-noise ratio than others, leading to well-
separated classes. In this case, an unbiased classifier yields high accuracies
on either class in some subjects and lower accuracies in others, inducing a
positive correlation between class-specific accuracies

On the other hand, within each subject, any classification algorithm
faces a trade-off between performing better on one class at the expense
of the other class. Thus, any variability in setting this threshold leads to
negatively correlated class-specific accuracies, an argument that is formally
related to receiver-operating characteristics. Moreover, if the degree of class
imbalance in the data varies between subjects, classifiers might be biased in
different ways, again leading to negatively correlated accuracies.

In summary, π+ and π− may not always be independent. We therefore
turn to an alternative model for mixed-effects inference on the balanced
accuracy that embraces potential dependencies between class-specific accu-
racies (Figure 4.8b).

The bivariate normal-binomial model no longer assumes that π+ and
π− are drawn from separate populations. Instead, we use a bivariate pop-
ulation density whose covariance structure defines the form and extent of
the dependency between π+ and π−. For this combined prior, we use a
bivariate normal density. Because this density has infinite support, we do
not define it on the accuracies themselves but on their log odds. In this way,
each subject j is associated with a two-dimensional vector of class-specific
accuracies,

ρj =
(
ρ+
j

ρ−j

)
=
(
σ−1(π+

j )
σ−1(π−j )

)
∈ R2, (4.4.7)

where σ−1(π) := ln π − ln(1 − π) represents the logit (or inverse-logistic)
transform. Conversely, class-specific accuracies can be recovered using

πj =
(
π+
j

π−j

)
=
(
σ(ρ+

j )
σ(ρ−j )

)
∈ [0, 1]2, (4.4.8)

where σ(ρ) := 1/(1 + exp(−ρ)) denotes the sigmoid (or logistic) transform.
Thus, we can replace the two independent Beta distributions for π+ and π−
in (4.4.1) by a single bivariate Gaussian prior,

p(ρj | µ,Σ) = N2(ρj | µ,Σ), (4.4.9)
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Figure 4.9: Bivariate densities of class-specific accuracies in the bivariate
normal-binomial model. In the bivariate normal-binomial model (Section 4.4.3),
class-specific accuracies are assumed to follow a bivariate logit-normal distribution. This
figure illustrates the flexibility of this distribution. Specifically, (a) the standard param-
eterization is compared to a distribution with (b) an increased accuracy on one class
but not the other, (c) an increased population heterogeneity, and (d) a correlation be-
tween class-specific accuracies. The x- and y-axis represent the accuracies on positive
and negative trials, respectively.

in which µ ∈ R2 represents the population mean and Σ ∈ R2×2 encodes
the covariance structure between accuracies on positive and negative trials.
The resulting density on π ∈ R2 is a bivariate logit-normal distribution
(Figure 4.9).

In analogy with the prior placed on α and β in Section 4.3.1, we now
specify a prior for the population parameters µ and Σ. Specifically, we seek
a diffuse prior that induces a noninformative bivariate distribution over
[0, 1] × [0, 1]. We begin by considering the family of conjugate priors for
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(µ,Σ), that is, the bivariate normal-inverse-Wishart distribution,

p(µ,Σ | µ0, κ0,Λ0, ν0)

∝ |Σ|−( ν0
2 +2) exp

(
−1

2tr(Λ0Σ−1)− κ0

2 (µ− µ0)TΣ−1(µ− µ0)
)
. (4.4.10)

In this distribution, the population hyperparameters Λ0 and ν0 specify the
scale matrix and the degrees of freedom, while the parameters µ0 and κ0
represent the prior mean and the number of prior measurements on the Σ
scale, respectively (Gelman et al., 2003). A more convenient representation
can be obtained by factorizing the density into

p(Σ | Λ0, ν0) = Inv-Wishartν0(Σ | Λ−1
0 ) and (4.4.11)

p(µ | Σ, µ0, κ0) = N2(µ | µ0,Σ/κ0). (4.4.12)

In order to illustrate the flexibility offered by the bivariate normal den-
sity on ρ, we derive p(π | µ,Σ) in closed form Appendix B.2 and then
compute the bivariate density on a two-dimensional grid (Figure 4.9).

For the purpose of specifying a prior, we seek hyperparameters µ0, κ0,
Λ0, and ν0 that induce a diffuse bivariate distribution over π. This can be
achieved using

µ0 = (0, 0)T, κ0 = 1, Λ0 =
(

1 0
0 1

)−1
, ν0 = 5. (4.4.13)

4.4.4 Stochastic approximate inference
In contrast to the twofold beta-binomial model discussed earlier, the bivari-
ate normal-binomial model makes it difficult to sample from the posterior
densities over model parameters using a Metropolis scheme. In order to
sample from p(µ,Σ | k+

1:m, k
−
1:m), we would have to evaluate the likelihood

p(k+
1:m, k

−
1:m | µ,Σ); this would require us to integrate out π+ and π−, which

is difficult.
A better strategy than Metropolis sampling is to use a Gibbs sampler

(Geman and Geman, 1984) to draw from the joint posterior p(ρ1:m, µ,Σ |
k+

1:m, k
−
1:m), from which we can derive samples for the conditional posteriors

p(ρ1:m | k+
1:m, k

−
1:m) and p(µ,Σ | k+

1:m, k
−
1:m). In contrast to a Metropolis

scheme, Gibbs sampling requires only full conditionals, that is, distribu-
tions of one latent variable conditioned on all other variables in the model
(Gelfand and Smith, 1990). Whenever a full conditional is not available, we
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can sample from it using a Metropolis step. Thus, we combine a Gibbs
skeleton with interleaved Metropolis steps to sample from the posterior
p(ρ1:m, µ,Σ | k+

1:m, k
−
1:m). See Section 4.4.6 for an application.

First, population parameter estimates can be obtained by sampling from
the posterior density p(µ,Σ | k+

1:m, k
−
1:m) using a Metropolis-Hastings ap-

proach. Second, subject-specific accuracies are estimated by first sampling
from p(ρj | k+

1:m, k
−
1:m) and then applying a sigmoid transform to obtain

samples from the posterior density over subject-specific balanced accura-
cies, p(φj | k+

1:m, k
−
1:m). Finally, the predictive density p(φ̃ | k+

1:m, k
−
1:m) can

be obtained using an ancestral-sampling step on the basis of µ(τ) and Σ(τ)

followed by a sigmoid transform. As before, we use the obtained samples
in all three cases to compute approximate posterior probability intervals or
infraliminal probabilities. A detailed description of this algorithm can be
found in Appendix B.1.

4.4.5 Bayesian model selection
While the twofold beta-binomial model assumes independent class-specific
accuracies, the bivariate normal-binomial model relaxes this assumption
and allows for correlations between accuracies. This raises two questions.
First, given a particular dataset, which model is best at explaining observed
classification outcomes? And second, can we combine the two models to
obtain posterior inferences that integrate out uncertainty about which model
is best? Both questions can be answered using the marginal likelihood,
or model evidence, i.e., the probability of the data given the model, after
integrating out the parameters:

p(k+
1:m, k

−
1:m |M) =

∫
p(k+

1:m, k
−
1:m | θ) p(θ |M) dθ (4.4.14)

Here, θ serves as a placeholder for all model parameters and p(θ |M) repre-
sents its prior distribution under a given model M . Under a flat prior over
models, Bayes’ theorem tells us that the model with the highest evidence
has the highest posterior probability given the data:

p(M | k+
1:m, k

−
1:m) ∝ p(k+

1:m, k
−
1:m |M) (4.4.15)

In practice, the model evidence is usually replaced by the log model evi-
dence, which is monotonically related but numerically advantageous.
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Concerning the first model described in this section, the twofold beta-
binomial model Mbb, the log model evidence is given by

ln p(k+
1:m, k

−
1:m |Mbb) (4.4.16)

= ln
∫
p(k+

1:m | π
+
1:m) p(π+

1:m) dπ+
1:m

+ ln
∫
p(k−1:m | π

−
1:m) p(π−1:m) dπ−1:m (4.4.17)

= ln
〈

m∏
j=1

p(k+
j | π

+
j )
〉
π+

1:m

+ ln
〈

m∏
j=1

p(k−j | π
−
j )
〉
π−1:m

(4.4.18)

where we have omitted the conditional dependence on Mbb in (4.4.17) and
(4.4.18).8 The expression can be approximated by

≈ ln 1
c

c∑
τ=1

m∏
j=1

Bin
(
k+
j

∣∣∣ π+(τ)
j

)
+ ln 1

c

c∑
τ=1

m∏
j=1

Bin
(
k−j

∣∣∣ π−(τ)
j

)
, (4.4.19)

where π+(τ)
j and π−(τ)

j represent independent samples from the prior distri-
bution over subject-specific accuracies. They can be obtained using ances-
tral sampling, starting from the prior over α and β, as given in (4.3.6).

In the case of the bivariate normal-binomial model Mnb, the model evi-
dence no longer sums over model partitions as in (4.4.17), and so the ap-
proximation is derived differently,

ln p(k+
1:m, k

−
1:m |Mnb) (4.4.20)

= ln
∫
p
(
k+

1:m, k
−
1:m

∣∣ ρ1:m
)
p (ρ1:m |Mnb) dρ1:m (4.4.21)

≈ ln 1
c

c∑
τ=1

m∏
j=1

Bin
(
k+
j

∣∣∣ σ (ρ(τ,1)
j

))
Bin

(
k−j

∣∣∣ σ (ρ(τ,2)
j

))
, (4.4.22)

for which we provide additional details in on p. 226 in Appendix B.1. Having
computed the model evidences, one can proceed to Bayesian model selection
(BMS) by evaluating the log Bayes factor,

ln BFbb,nb = ln p(k+
1:m, k

−
1:m |Mbb)− ln p(k+

1:m, k
−
1:m |Mnb), (4.4.23)

8One could also express the model evidence in terms of an expectation with respect
to p(α, β |Mbb).
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representing the evidence in favour of the beta-binomial over the normal-
binomial model. By convention, a log Bayes factor greater than 3 is con-
sidered strong evidence in favour of one model over another, whereas a log
Bayes factor greater than 5 is referred to as very strong evidence (Kass and
Raftery, 1995). The best model can then be used for posterior inferences
on the mean accuracy in the population or the predictive accuracy in a new
subject from the new population.

The second option to utilize the model evidences of competing models
is Bayesian model averaging (Cooper and Herskovits, 1992; Madigan and
Raftery, 1994; Madigan et al., 1996). Under this view, we do not commit
to a particular model but average the predictions made by all of them,
weighted by their respective posteriors. In this way, we obtain a mixture
expression for the posterior of the mean accuracy in the population,

p
(
φ
∣∣ k+

1:m, k
−
1:m
)

(4.4.24)

=
∑
M

p
(
φ
∣∣ k+

1:m, k
−
1:m,M

)
p
(
M
∣∣ k+

1:m, k
−
1:m
)
. (4.4.25)

Similarly, we can obtain the posterior predictive distribution of the balanced
accuracy in a new subject from the same population,

p
(
φ̃
∣∣ k+

1:m, k
−
1:m
)

(4.4.26)

=
∑
M

p
(
φ̃
∣∣ k+

1:m, k
−
1:m,M

)
p
(
M
∣∣ k+

1:m, k
−
1:m
)
. (4.4.27)

The computational complexity of the above stochastic approximations
is considerable, and so it can sometimes be useful to resort to a determin-
istic approximation instead, such as variational Bayes. While we do not
consider this approach in this first part of the chapter, it does provide a
helpful perspective on interpreting the model evidence. Specifically, the
model evidence can be approximated by a variational lower bound, the neg-
ative free-energy F . In the case of the beta-binomial model for instance,
this quantity can be written as

F = 〈ln p (k1:m | α, β, π1:m)〉q
−KL [q(α, β, π1:m) ‖ p(α, β, π1:m)] . (4.4.28)

The first term is the log-likelihood of the data expected under the approxi-
mate posterior q(α, β, π1:m); it represents the goodness of fit (or accuracy)
of the model. The second term is the Kullback-Leibler divergence between
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the approximate posterior and the prior; it represents the complexity of the
model. This complexity term increases with the number of parameters, their
inverse prior covariances, and with the deviation of the posterior from the
prior that is necessary to fit the data. Thus, the free-energy approximation
shows that the model evidence incorporates a trade-off between explaining
the observed data (i.e., goodness of fit) and remaining consistent with our
prior (i.e., simplicity or negative complexity). In other words, the model
evidence encodes how well a model strikes the balance between explaining
the data and remaining simple (Pitt and Myung, 2002; Beal, 2003; Stephan
et al., 2009a).

4.4.6 Applications
Following the initial applications in Section 4.3.3, we now turn to simu-
lations that contrast inference on accuracies with inference on balanced
accuracies. Applications to empirical data will be deferred until Section 4.7
after having introduced a variational Bayes approximation.

Inference on the balanced accuracy

The balanced accuracy is a more useful performance measure than the ac-
curacy, especially when a classifier was trained on an imbalanced test set
and may thus exhibit bias. In order to illustrate the relative utility of these
two measures in our Bayesian models, we simulated an imbalanced dataset,
composed of 20 subjects with 100 trials each, where each subject had be-
tween 70 and 90 positive trials (drawn from a uniform distribution) and
between 10 and 30 negative trials.

An initial simulation specified a high population accuracy on the positive
class and a low accuracy on the negative class, with equal variance in both
(Figure 4.10a,b). These accuracies were chosen such that the classifier would
perform at chance on a hypothetical balanced sample. This allowed us to
mimic the commonly observed situation in which a classifier takes advantage
of the imbalance in the data and preferably predicts the majority class.

We independently inverted three competing models: (i) the beta-binomial
model to infer on the classification accuracy; and the (ii) twofold beta-
binomial and (iii) bivariate normal-binomial models to infer on the balanced
accuracy. As expected, the beta-binomial model falsely suggested high evi-
dence for above-chance classification. In contrast, the twofold beta-binomial
and normal-binomial models correctly indicated the absence of a statistical
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relation between data and class labels (Figure 4.10c).
These characteristics were confirmed across a large set of simulations. As

expected, inference on the accuracy falsely concluded above-chance perfor-
mance, especially in the presence of a significant degree of class imbalance.
By contrast, inference on the balanced accuracy did not incorrectly reject
the hypothesis of the classifier operating at the level of chance more often
than prescribed by the test size (Figure 4.10d).

We compared the two models for inference on the balanced accuracy by
means of Bayesian model comparison. Using 106 samples with Eqn. (4.4.23),
we obtained a log Bayes factor of 33.2 in favour of the twofold beta-binomial
model (i.e., under a flat prior over models, the posterior belief in the beta-
binomial model is greater than 99.99%). This result represents very strong
evidence (Kass and Raftery, 1995) that the beta-binomial model provided a
better explanation of the synthetic classification outcomes than the normal-
binomial model. This finding is plausible since no correlation structure
among class-specific accuracies was imposed in the simulation; thus, in this
case, the beta-binomial model is a better model than the more complex
normal-binomial model.

To assess the sampling-induced uncertainty about this result, we re-
peated the computation of the log Bayes factor 100 times. We obtained a
sample standard deviation of 8.0, i.e., the uncertainty was small in relation
to the overall strength of evidence. By comparison, when using only 103

samples instead of 106, the standard deviation increased to 25.5. We used
106 samples for all subsequent analyses.

We repeated the main analysis above 1 000 times and plotted the frac-
tion of above-chance conclusions against the degree of class imbalance. Note
that the resulting curve is not a power curve in the traditional sense, as its
independent variable is not the true (balanced) accuracy but the accuracy
on positive trials, i.e., an indicator of the degree of class imbalance. Fig-
ure 4.10d shows that the simple beta-binomial model provides progressively
misleading conclusions with class imbalance at the group level (cf. Fig-
ure 4.5). In contrast, both schemes for inference on the balanced accuracy
made above-chance conclusions in less than 5% of the simulations, as in-
tended by their test size.

All models considered in this chapter are based on diffuse priors designed
in such a way that posterior inferences are clearly dominated by the data.
However, one might ask to what extent such inferences depend on the exact
form of the prior. To examine this dependence, we carried out a sensitivity
analysis in which we considered the infraliminal probability of the posterior
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population mean balanced accuracyFigure 4.10: Inference on the balanced accuracy. (a) An imbalanced dataset
which has led to a classification bias in favour of the majority class. The plot shows, for
each subject, the number of correctly classified positive (green) and negative (red) trials
and the respective total number of trials (grey). (b) Class-specific sample accuracies,
with the true positive rate on the y-axis and the true negative rate on the x-axis. The
underlying true population distribution is represented by a bivariate Gaussian kernel
density estimate (contour lines), showing the bias of the classifier. (c) Central 95%
posterior probability intervals based on the simple beta-binomial model for inference on
the population accuracy as well as the twofold beta-binomial model and the bivariate
normal-binomial model for inference on the balanced accuracy. The true mean balanced
accuracy in the population is at chance (green). It is accurately estimated by models
inferring on the balanced accuracy (red, blue). Bayesian model selection yielded very
strong evidence in favour of the normal-binomial model (posterior model probability =
97.7%). (d) Probability of falsely detecting above-chance performance, using different
inference schemes. The true balanced accuracy is 0.5. The x-axis represents the degree
of class imbalance.

population mean as a function of prior moments (Figure 4.11).
We found that inferences were extremely robust, in the sense that the

influence of the prior moments on the resulting posterior densities was neg-
ligible in relation to the variance resulting from the fact that we are using a
(stochastic) approximate inference method for model inversion. In particu-
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Figure 4.11: Sensitivity analysis. This figure illustrates the dependence of posterior
inferences on the exact form of the priors proposed in this chapter. Each graph shows the
infraliminal probability of the population mean accuracy (i.e., the posterior probability
mass below 0.5) as a function of a particular parameter of the prior distribution used for
model inversion. (a,b) Same datasets as shown those shown in Figures 4.4a and 4.6a, but
with a slightly lower population mean of 0.7. Inferences on the population accuracy are
based on the beta-binomial model. (c,d,e) Same dataset as shown in Figure 4.10a. Infer-
ences on the population balanced accuracy are based on the bivariate normal-binomial
model.

lar, varying the constant (originally: 1) in Eqn. (4.3.6) for the beta-binomial
prior left the infraliminal probability of the posterior accuracy unaffected
(Figure 4.11a,b). Similarly, varying µ0, κ0, or ν0 in the normal-binomial
model had practically no influence on the infraliminal probability of the
posterior balanced accuracy (Figure 4.11c,d,e).

Application to synthetic data

All experiments described so far were based on classification outcomes sam-
pled from the beta-binomial or normal-binomial model. This ensured, by
construction, that the distributional assumptions underlying the models
were fulfilled. To illustrate the generic applicability of our approach when
its assumptions are not satisfied by construction, we applied models for
mixed-effects inference to classification outcomes obtained on synthetic data
features for a group of 20 subjects with 100 trials each (Figure 4.12). In
addition to probing the models’ robustness with regard to distributional
assumptions, this allows one to examine what correlations between class-
specific accuracies may be observed in practice.

Synthetic data were generated using a two-level sampling approach that
reflected the hierarchical nature of group studies. We specified a population
distribution, sampled subject-specific means and variances from it, and then
used these to generate trial-specific feature vectors.

In a first simulation (Figure 4.12, top row), we generated 50 positive
trials and 50 negative trials for each individual subject j by drawing one-
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Figure 4.12: Application to synthetic data. (a) Classification outcomes obtained
by applying a linear support vector machine to synthetic data, using leave-one-out cross-
validation. (b) Sample accuracies on positive (TPR) and negative classes (TNR) show
the positive correlation between class-specific accuracies (blue). The underlying popula-
tion distribution is represented by a bivariate Gaussian kernel density estimate (contour
lines). (c) Central 95% posterior probability intervals, resulting from inversion of the
beta-binomial model for inference on the population mean accuracy as well as the twofold
beta-binomial model (bb) and the bivariate normal-binomial model (nb) for inference on
the population mean balanced accuracy (all black). A frequentist 95% confidence inter-
val (red) is shown for comparison. Bayesian model selection yielded very strong evidence
(Kass and Raftery, 1995) in favour of the normal-binomial model (posterior model proba-
bility = 99.99%). (d) A second simulation was based on a synthetic heterogeneous group
with varying numbers of trials. (e) In this case, the classifier acquires a strong bias in
favour of the majority class. (f) As a result, inference on the accuracy is misleading;
the balanced accuracy is a much better performance indicator, whether based on the
beta-binomial (bb) or normal-binomial model (nb).

dimensional feature vectors from two normal distributions, N (xij | µ+
j , σj)

and N (xij | µ−j , σj), respectively. The moments of these subject-specific
distributions, in turn, were drawn from a population distribution, using
N (µ+

j | 1
2 ,

1
2 ) and µ−j = −µ+

j for the means, and Ga−1(σj | 10, 1
10 ) for the
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variance. The normal distribution and the inverse Gamma distribution are
conjugate priors for the mean and variance of a univariate normal distribu-
tion and, thus, represent natural choices for the population distribution.

To obtain classification outcomes, separately for each subject, we trained
and tested a linear support vector machine (SVM; Chang and Lin, 2011), us-
ing leave-one-trial-out cross-validation. Classification outcomes are shown
in Figure 4.12a, in which the numbers of correctly classified trials are il-
lustrated separately for the two classes and for each subject. The same
data are represented in terms of sample accuracies in Figure 4.12b (blue
dots). To illustrate ground truth, we repeated the above procedure (of
generating synthetic data and applying an SVM) 1 000 times and added a
contour plot of the resulting distribution of sample accuracies in the same
figure. This distribution was symmetric with regard to class-specific accu-
racies while these accuracies themselves were strongly positively correlated,
as one would expect from a linear classifier tested on perfectly balanced
datasets.

We applied all three models discussed in this chapter for inference: the
beta-binomial model for inference on the accuracy (Section 4.3.1), and the
twofold beta-binomial and normal-binomial model for inference on the bal-
anced accuracy (Sections 4.4.1 and 4.4.3). Central 95% posterior probability
intervals about the population mean are shown in Figure 4.12c, along with
a frequentist confidence interval of the population mean accuracy. All four
approaches provided precise intervals around the true population mean.
Comparing the two competing models for inference on the balanced accu-
racy, we obtained a log Bayes factor of 22.7 in favour of the twofold beta-
binomial model (posterior model probability > 99.99%), representing very
strong evidence (Kass and Raftery, 1995) that this model provided a better
explanation of the data (i.e., a better balance between fit and complexity)
than the bivariate normal-binomial model (standard deviation 8.8).

We repeated the above analysis with a subtle but important modifica-
tion: instead of using perfectly balanced data (50 positive and 50 negative
trials), we created imbalanced synthetic data using 70 positive and 30 nega-
tive trials per subject. All other details of the analysis remained unchanged
(Figure 4.12, bottom row). We observed that, as expected, the class imbal-
ance caused the classifier to acquire a bias in favour of the majority class.
This can be seen from the raw classification outcomes in which many more
positive trials (green) than negative trials (red) were classified correctly, rel-
ative to their respective prevalence in the data (grey; Figure 4.12d). The
bias is reflected accordingly by the estimated bivariate density of class-
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specific classification accuracies, in which the majority class consistently
performs well whereas the accuracy on the minority class varies strongly
(Figure 4.12e).

In this setting, we found that both the twofold beta-binomial model
and the normal-binomial model provided excellent estimates of the true
balanced accuracy (Figure 4.12f; log Bayes factor in favour of the beta-
binomial model: 65.3; standard deviation 14.2). In stark contrast, using the
single beta-binomial model or a conventional mean of sample accuracies to
infer on the population accuracy (as opposed to balanced accuracy) resulted
in estimates that were overly optimistic and therefore misleading.

4.4.7 Interim conclusions
Canonical classification algorithms are frequently used on multilevel or hi-
erarchically structured datasets, where a classifier is trained and tested for
each subject within a group. The first half of this chapter showed how
the evaluation of classification performance may benefit from mixed-effects
models that explicitly capture the hierarchical structure of the data.

Results on synthetic data have illustrated the characteristic features of
our approach: (i) posterior densities as opposed to point estimates of pa-
rameters; (ii) the ability to compare alternative (even non-nested) mod-
els; (iii) the ‘shrinking-to-the-population’ effect that regularizes estimates
of classification performance in individual subjects (Figure 4.7b); (iv) in-
creased sensitivity (Figure 4.7c); (v) more precise parameter estimates (Fig-
ure 4.7d); and (vi) avoidance of classifier bias for imbalanced datasets using
the balanced accuracy (Figure 4.10).

An important practical limitation of our approach lies in the high com-
putational complexity of our current inversion methods. In particular, our
MCMC algorithms lack guarantees about convergence rates. Our algorithms
also include heuristics regarding the number of burn-in samples, the pre-
cision of the overdispersed initial distributions and the proposal densities,
and regarding the number of chains run in parallel.

Some of these issues can be addressed using a Bayesian reformulation of
MCMC that allows one, for instance, to take into account prior knowledge
about the smoothness of the integrand (Rasmussen and Ghahramani, 2003).
The problem of high computational complexity itself, however, can be best
addressed by replacing stochastic inference by algorithms for deterministic
approximate inference, as proposed in the remaining part of this chapter.
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4.5 Variational Bayesian inference
on the accuracy
“An approximate answer to the right problem is worth a good

deal more than an exact answer to an approximate problem.”
John W. Tukey, 1915 – 2000

In the first half of this chapter, we proposed a solution to the limita-
tions of conventional methods for assessing classification performance. Our
approach was based on hierarchical models that naturally enabled mixed-
effects inference in a fully Bayesian framework. The practical utility of these
models, however, was limited by the high computational complexity of the
underlying MCMC sampling algorithms for model estimation. MCMC is
asymptotically exact; but it is also exceedingly slow, especially when per-
forming inference in a voxel-by-voxel fashion, as is common, for example,
in ‘searchlight’ approaches (Nandy and Cordes, 2003; Kriegeskorte et al.,
2006).

To overcome this limitation, we will devote the second part of this chap-
ter to the development of a variational Bayes (VB) algorithm. Our ap-
proach is characterized by three features. First, the model described below
is a mixed-effects model; it explicitly respects the hierarchical structure of
the data by simultaneously accounting for fixed-effects and random-effects
variance components. Second, the model can be equally used for inference
on the accuracy and the balanced accuracy, which is a better performance
indicator when the data are not perfectly balanced. Third, our variational
approximate inference scheme dramatically reduces the computational com-
plexity compared to sampling approaches.

4.5.1 The univariate normal-binomial model
As motivated in Section 4.3, we begin by modelling the number of correctly
classified trials kj in subject j as

p(kj | πj , nj) = Bin (kj | πj , nj) , (4.5.1)

where πj represents the latent classification accuracy in subject j.9 In con-
trast to previous models, at the group level, we shall assume accuracies to

9We will omit nj unless this introduces ambiguity.
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Figure 4.13: Inference on classification accuracies. (a) Conventional maximum-
likelihood estimation does not explicitly model within-subjects (fixed-effects) variance
components and is based on an ill-justified normality assumption. It is therefore in-
adequate for the statistical evaluation of classification group studies. (b) The normal-
binomial model respects the hierarchical structure of the study and makes natural dis-
tributional assumptions, thus enabling mixed-effects inference, which makes it suitable
for group studies. (c) Model inversion can be implemented efficiently using a variational
approximation to the posterior densities of the model parameters (see Figure 4.14 for
details).

be logit-normally distributed. In other words, each logit accuracy

ρj := σ−1(πj) := ln πj
1− πj

(4.5.2)

is drawn from a normal distribution,

p (ρj | µ, λ) = N (ρj | µ, λ) (4.5.3)

= λ√
2π

exp
(
−1

2λ (ρj − µ)2
)
, (4.5.4)

where µ and λ represent the population mean and the population preci-
sion (i.e., inverse variance), respectively. The inverse-sigmoid (or logit)
transform σ−1(πj) turns accuracies with support on the [0, 1] interval into
log-odds with support on the real line (−∞,+∞).

Since neuroimaging studies are typically confined to small sample sizes,
expressing prior ignorance about the population parameters is critical. We
use a diffuse prior on µ and λ such that the posterior will be dominated
by the data (for a validation of this prior, see Section 4.7). A natural
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parameterization is to use independent conjugate densities:

p (µ | µ0, λ0) = N (µ | µ0, λ0) (4.5.5)
p (λ | a0, b0) = Ga (λ | a0, b0) (4.5.6)

In the above densities, µ0 and λ0 encode the prior mean and precision of the
population, and a0 and b0 represent the shape and scale parameters that
specify the prior distribution of the population precision.10 In summary,
the univariate normal-binomial model uses a binomial distribution at the
level of individual subjects and a logit-normal distribution at the group level
(Figure 4.13b).11

In principle, given classification outcomes k ≡ k1:m ≡ (k1, . . . , km), in-
verting the above model immediately yields the desired posterior density
over parameters,

p(µ, λ, ρ | k) (4.5.7)

=

∏m

j=1 Bin(kj |σ(ρj))N (ρj |µ, λ)N (µ|µ0, λ0)Ga(λ|a0, b0)∫∫
· · ·
∫ ∏m

j=1 Bin(kj |σ(ρj))N (ρj |µ, λ)N (µ|µ0, λ0)Ga(λ|a0, b0) dρ1 · · · dρm dµ dλ
.

In practice, however, computing the integral in the denominator of the
above expression, which provides the normalization constant for the poste-
rior density, is prohibitively difficult. We previously described a stochastic
approximation based on MCMC algorithms; however, the practicality of
these algorithms was limited by their considerable computational complex-
ity. Here, we propose to invert the above model using a deterministic VB
approximation (Figure 4.13c). This approximation is no longer asymptot-
ically exact, but it conveys considerable computational advantages. The
remainder of this section describes its derivation (see Figure 4.14 for a sum-
mary).

10For an alternative parameterization, see Leonard (1972).
11The univariate normal-binomial model described here is formally related to the pre-

viously proposed bivariate normal-binomial model for inference on the balanced accuracy
(Section 4.4.3). The two models differ in the number of observed variables per subject;
their differences are unrelated to the distinction between (mass-)univariate and multi-
variate analyses.
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Figure 4.14: Variational inversion of the univariate normal-binomial model.
Variational inference translates a difficult integration problem into an easier optimization
problem. This schematic summarizes the individual steps involved in a variational ap-
proach to the inversion of the univariate normal-binomial model, as detailed in the main
text.

4.5.2 Variational inference

The difficult problem of finding the exact posterior p(µ, λ, ρ | k) can be
transformed into the easier problem of finding an approximate parametric
posterior q(µ, λ, ρ | δ) with moments (i.e., parameters) δ (which we will omit
to simplify the notation). Inference then reduces to finding a density q that
minimizes a measure of dissimilarity between q and p. This comparison can
be achieved by maximizing the so-called negative free-energy of the model
under the assumption of q as the posterior, given the data, by varying
the moments of q. This is equivalent to minimizing the Kullback-Leibler
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divergence (KL) between the approximate and true posteriors, q and p:

KL[q ‖ p] :=
∫∫∫

q(µ, λ, ρ) ln q(µ, λ, ρ)
p(µ, λ, ρ | k) dµdλ dρ (4.5.8)

=
∫∫∫

q(µ, λ, ρ) ln q(µ, λ, ρ)
p(µ, λ, ρ | k) p(k)dµdλ dρ+ ln p(k) (4.5.9)

=⇒ ln p(k) = KL[q ‖ p]−
〈

ln q(µ, λ, ρ)
p(k, µ, λ, ρ)

〉
q(µ,λ,ρ)︸ ︷︷ ︸

=:F(q,k)

(4.5.10)

Thus, the log model evidence ln p(k) is the sum of (i) the KL-divergence
between the approximate and the true posterior and (ii) the negative free-
energy F(q, k). Because the KL-divergence cannot be negative, maximizing
the negative free-energy with respect to q minimizes the KL-divergence and
thus results in an approximate posterior that is maximally similar to the true
posterior. In addition, maximizing the negative free-energy means tighten-
ing the lower bound to the log model evidence which enables Bayesian model
comparison.

In summary, maximizing the negative free-energy in (4.5.10) enables
both inference on the posterior density over parameters and model compar-
ison. Here, we are primarily interested in the posterior density.

In trying to maximize F(q, k), variational calculus tells us that

∂F (q, k)
∂q

= 0 =⇒ q(µ, λ, ρ) ∝ exp (I(µ, λ, ρ)) . (4.5.11)

The above says that the approximate posterior which maximizes the nega-
tive free-energy is proportional to the exponential of the negative variational
energy, which is itself defined as

I(µ, λ, ρ) := ln p(k, µ, λ, ρ). (4.5.12)

Mean-field approximation

Rather than working with the negative variational energy in (4.5.12) itself,
it is beneficial to assume that the joint posterior over model parameters
factorizes into specific parts. Using one density for each variable constitutes
the mean-field assumption

q(µ, λ, ρ) = q(µ) q(λ) q(ρ), (4.5.13)
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which turns the problem of maximizing F(q, k) into the problem of deriving
three log expectations:

I1(µ) = ln 〈p(k, µ, λ, ρ)〉q(λ,ρ) (4.5.14)
I2(λ) = ln 〈p(k, µ, λ, ρ)〉q(µ,ρ) (4.5.15)
I3(ρ) = ln 〈p(k, µ, λ, ρ)〉q(µ,λ) (4.5.16)

Invoking a mean-field approximation in this way has several advantages over
working with (4.5.12) directly: (i) it makes it more likely that we can find
the exact distributional form of a marginal approximate posterior (as will
be the case for µ and λ); (ii) it may make the Laplace assumption more
appropriate in those cases where we cannot identify a fixed form (as will
be the case for ρ); and (iii) it may provide us with interpretable update
equations (as will be the case for µ and λ).

Parametric assumptions

Due to the structure of the model, the posteriors on the population param-
eters µ and λ are conditionally independent given the data. In addition,
owing to the conjugacy of their priors, the posteriors on µ and λ follow the
same distributions and do not require any additional parametric assump-
tions:

q(µ) = N (µ | µµ, ηµ) (4.5.17)
q(λ) = Ga (λ | aλ, bλ) (4.5.18)

Subject-specific (logit) accuracies ρ ≡ (ρ1, . . . , ρm) are also conditionally in-
dependent given the data. However, we require a distributional assumption
for their posteriors to make model inversion feasible. Specifically, we assume
posterior subject-specific (logit) accuracies to be normally distributed:

q(ρ) =
m∏
j=1
N
(
ρj
∣∣ µρj , ηρj) (4.5.19)

It should be noted that the above conditional independence is not an addi-
tional assumption but is a consequence of the fact that the posterior for each
subject only depends on its Markov blanket, i.e., the subject’s data and the
population parameters (but not the other subject’s logit accuracies). This



Variational Bayesian inference on the accuracy 99

can be seen from the fact that

q(µ, λ, ρ) = q(µ) q(λ) q(ρ) (4.5.20)

= q(µ) q(λ)
m∏
j=1

q(ρj). (4.5.21)

The conditional independence in (4.5.19) differs in a subtle but important
way from the assumption of unconditional independence that is implicit
in random-effects analyses on the basis of a t-test on subject-specific sam-
ple accuracies. In the case of such t-tests, estimation in each subject only
ever uses data from that same subject. By contrast, the subject-specific
posteriors in (4.5.19) are informed by (or are borrowing strength from) ob-
servations from the entire group (by means of their effect on the population
parameters). As will be seen in Section 4.7, the ensuing shrinkage effect is
crucial for obtaining precise subject-specific estimates.

Derivation of variational densities

For each mean-field part in (4.5.13), the variational density q(·) can be
obtained by evaluating the variational energy I(·), as described next.

First variational energy. The first variational energy concerns the pos-
terior density over the population mean µ. It is given by

I1(µ) = 〈ln p(k, µ, λ, ρ)〉q(λ,ρ) (4.5.22)

= µaλbλ

−1
2mµ+

m∑
j=1

µρj

+ µ η0

(
µ0 −

1
2µ
)
. (4.5.23)

Setting the first derivative to zero yields an analytical expression for the
maximum:

dI(µ)
dµ = −µ(maλbλ + η0) + µ0η0 + aλbλ

m∑
j=1

µρj = 0 (4.5.24)

=⇒ µ∗ =
µ0η0 + aλbλ

∑m
j=1 µρj

η0 +maλbλ
(4.5.25)
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Having found the mode of the approximate posterior, we can use a second-
order Taylor expansion to obtain closed-form approximations for its mo-
ments:

µµ = µ∗ and (4.5.26)

ηµ = − dI2(µ)
dµ2

∣∣∣∣
µ=µ∗

= maλbλ + η0 (4.5.27)

Thus, the posterior density of the population mean logit accuracy under our
mean-field and Gaussian approximations is N (µ | µµ, ηµ).

As can be seen above, the approach we adopt here does not optimize all
sufficient statistics of the approximate posterior. Instead, we only optimize
the mean, while enforcing the variance to equate the inverse curvature at
the mean. This procedure is a Laplace approximation and implies that
the negative free-energy is a function simply of the posterior means (as
opposed to a function of the posterior means and covariances). It is a local
approximation rather than a global optimization.

As long as the distributional family of the approximate density is similar
to the true posterior, the Laplace approximation confers two advantages:
(i) it is computationally efficient (see discussion in Section 4.8); and (ii) it
typically gives rise to interpretable update equations. In the case of the first
variational energy, for example, one can see that the posterior precision of
the population mean (ηµ) is simply the sum of the prior precision (η0) and
the mean of the posterior population precision (aλbλ), correctly weighted
by the number of subjects.

Based on the above approximation for the posterior logit accuracy, we
can see that the posterior mean accuracy itself, ξ := σ(µ), is logit-normally
distributed and can be expressed in closed form:

logitN (ξ | µµ, ηµ) (4.5.28)

= 1
ξ(1− ξ)

√
ηµ
2π exp

(
−ηµ2

(
σ−1(ξ)− µµ

)2) (4.5.29)
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Second variational energy. The second variational energy concerns the
population precision λ and is given by

I2(λ) = 〈ln p(k, µ, λ, ρ)〉q(µ,ρ) (4.5.30)

= m

2 lnλ− λ

2

m∑
j=1

((
µρj − µµ

)2 + η−1
ρj + η−1

µ

)
+ (a0 − 1) lnλ− λ

b0
+ const. (4.5.31)

The above expression already has the form of a log-Gamma distribution
with parameters

aλ = 1
2m+ a0 and (4.5.32)

bλ =

1
2

m∑
j=1

((
µρj − µµ

)2 + η−1
ρj + η−1

µ

)
+ 1
b0

−1

. (4.5.33)

From this we can see that the posterior shape aλ is a weighted sum be-
tween prior shape a0 and data m. When viewing the second parameter as
a ‘rate’ coefficient b−1

λ (rather than as a shape coefficient bλ), we can fur-
thermore see that the posterior rate really is a weighted sum of: the prior
rate (b−1

0 ); the dispersion of subject-specific means; their variances (η−1
ρj );

and our uncertainty about the population mean (η−1
µ ).

Third variational energy. The variational energy of the third partition
concerns the model parameters representing subject-specific latent (logit)
accuracies. This energy is given by

I3(ρ) = 〈ln p(k, µ, λ, ρ)〉q(µ,λ) (4.5.34)

=
m∑
j=1

kj ln σ(ρj) + (nj − kj) ln (1− σ(ρj))

− 1
2aλbλ (ρj − µµ)2 + const. (4.5.35)

Since an analytical expression for the maximum of this energy does not
exist, we resort to an iterative Gauss-Newton (GN) scheme. For this, we
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begin by considering the Jacobian(
dI(ρ)
dρ

)
j

= ∂I(ρ)
∂ρj

(4.5.36)

= kj − njσ(ρj) + aλbλ(µµ − ρ) = 0 (4.5.37)

and the Hessian(
d2I(ρ)
dρ2

)
jk

= ∂2I(ρ)
∂ρj∂ρk

(4.5.38)

= −δjk [njσ (ρj) (1− σ (ρj)) + aλbλ] , (4.5.39)

where the Kronecker delta operator δjk is 1 if j = k and 0 otherwise. As
noted before, the absence of off-diagonal elements in the Hessian is not based
on an assumption of conditional independence of subject-specific posteriors;
it is a consequence of the mean-field separation in (4.5.20). Each GN itera-
tion performs the update

ρ← ρ∗ −

[
d2I(ρ)
dρ2

∣∣∣∣
ρ=ρ∗

]−1

× dI(ρ)
dρ

∣∣∣∣
ρ=ρ∗

(4.5.40)

until the vector ρ∗ converges. Using this maximum, we can use a second-
order Taylor expansion (i.e., the Laplace approximation) to set the moments
of the approximate posterior:

µρ = ρ∗ and (4.5.41)

ηρ = − d2I(ρ)
dρ2

∣∣∣∣
ρ=ρ∗

(4.5.42)

VB algorithm

The expressions for the three variational energies depend on one another.
This circularity can be resolved by looping over each expression in turn
and updating the moments of the current approximate marginal given the
current moments of the other marginals. This procedure maximizes the
negative free-energy and leads to approximate marginals that are maximally
similar to the exact marginals (within the boundaries of their parametric
form).
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It is worth noting that the algorithm does not strictly increase a lower
bound to the negative free-energy on each iteration. This is due to the para-
metric assumptions, in particular the Laplace approximation which only
retains terms up to the second order. Thus, the algorithm evolves an ap-
proximation to a lower bound to the log model evidence.

The algorithm terminates when the moments of all approximate poste-
riors have converged.

MCMC sampling

The variational Bayes scheme presented above is computationally highly
efficient; it typically converges after just a few iterations. However, its
results are only exact to the extent to which its distributional assumptions
are justified. To validate these assumptions, we compared VB to an MCMC
approach that is computationally much more expensive than variational
Bayes but exact in the limit of infinite runtime.

The Gibbs sampler used here is described in detail in Appendix C.1. It is
similar in structure to the algorithms in Appendices A.1 and B.1, but based
on the new distributional assumptions specific to the univariate normal-
binomial model. The algorithm proceeds by cycling over model parameters,
drawing samples from their full-conditional distributions until the desired
number of samples (e.g., 106) has been generated. Importantly, unlike VB,
which was based on a mean-field assumption, the posterior obtained through
MCMC retains any conditional dependencies among the model parameters.

4.6 Variational Bayesian inference
on the balanced accuracy

The twofold normal-binomial model. The normal-binomial model
presented above can be easily extended to allow for inference on the bal-
anced accuracy. We have previously explored different ways of constructing
models for inference on the balanced accuracy (Sections 4.4.1 and 4.4.3.
Here, we adopt the approach of inferring on the balanced accuracy by du-
plicating our generative model for accuracies and applying it separately to
data from the two classes. This constitutes the twofold normal-binomial
model (Figure 4.15).
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Figure 4.15: Inference on balanced accuracies. The univariate normal-binomial
model (Figure 4.13b) can be easily extended to enable inference on the balanced accu-
racy. Specifically, the model is inverted separately for classification outcomes obtained
on positive and negative trials. The resulting posteriors are then recombined (see main
text).

Inference. To infer on the balanced accuracy, we separately consider the
number of correctly classified positive trials k+

j and the number of correctly
predicted negative trials k−j for each subject j = 1 . . .m. We next describe
the true accuracies within each subject as π+

j and π−j . The population
parameters µ+, λ+ and µ−, λ− then represent the population of accuracies
on positive and negative trials, respectively.

Inverting the model proceeds by inverting its two separate parts inde-
pendently. But in contrast to our previous treatment, we are no longer
interested in the posterior densities over the population mean accuracies
µ+ and µ− themselves. Rather, we wish to obtain the posterior density of
the balanced accuracy,

p
(
φ
∣∣ k+, k−

)
= p

(
1
2
(
σ
(
µ+)+ σ

(
µ−
)) ∣∣∣∣ k+, k−

)
. (4.6.1)

Unlike the population mean accuracy (4.5.26), which was logit-normally
distributed, the posterior mean of the population balanced accuracy can no
longer be expressed in closed form. The same applies to subject-specific
posterior (balanced) accuracies. We therefore approximate the respective
integrals by (one-dimensional) numerical integration.
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For this, we use a convolution analogous to Eqn. (3.2.6) on p. 53. Thus,
we obtain the posterior distribution of the balanced accuracy as

p
(
φ
∣∣ k+, k−

)
=
∫ 2φ

0
pσ(µ+)

(
2φ− z | k+) pσ(µ−)

(
z
∣∣ k−) dz, (4.6.2)

where pσ(µ+) and pσ(µ−) represent the individual posterior distributions of
the population accuracy on positive and negative trials, respectively.

4.7 Applications
This section illustrates the sort of inferences that can be made using VB
in a classification study. We begin by considering synthetic classification
outcomes to evaluate the consistency of our approach and illustrate its link
to classical fixed-effects and random-effects analyses. We then apply our
approach to empirical fMRI data obtained from a trial-by-trial classification
analysis.

4.7.1 Application to simulated data
We examined the statistical properties of our approach in two typical set-
tings: (i) a larger simulated group of subjects with many trials each; and
(ii) a small group of subjects with few trials each, including missing trials.
Before we turn to the results of these simulations, we will pick one simulated
dataset from either setting to illustrate inferences supported by our model
(Figures 4.16 and 4.17).

The first synthetic dataset is based on a group of 30 subjects with 200
trials each (i.e., 100 trials in each class). Outcomes were generated using
the univariate normal-binomial model with a population mean (logit accu-
racy) of µ = 1.1 and a relatively high logit population precision of λ = 4
(Figure 4.16a). The corresponding population mean accuracy was 71%.

In inverting the model, the parameter of primary interest is µ, the (logit)
population mean accuracy. Our simulation showed a typical result in which
the posterior distribution of the population mean was sharply peaked around
the true value, with its shape virtually indistinguishable from the corre-
sponding MCMC result (Figure 4.16b). In practice, a good way of summa-
rizing the posterior is to report a central 95% posterior probability interval,
also sometimes referred to as a Bayesian credible interval. Although this
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Figure 4.16: Application to simulated data I. Two simple synthetic datasets illus-
trative the sort of inferences that can be made using a mixed-effects model. (a) Simulated
data, showing the number of trials in each subject (grey) and the number of correct pre-
dictions (black). (b) Resulting posterior density of the population mean accuracy when
using variational Bayes or MCMC. (c) Posterior densities can be summarized in terms of
central 95% posterior intervals. Here, the two Bayesian intervals (blue/black) are com-
pared with a frequentist random-effects 95% confidence interval and with fixed-effects
intervals based on the pooled and the averaged sample accuracy. (f–h) Same plots as
in the top row, but based on a different simulation setting with a much smaller num-
ber of subjects and a smaller and more heterogeneous number of trials in each subject.
Continued in Figure 4.17.

interval is conceptually different from a classical (frequentist) 95% confi-
dence interval, in this particular case the two intervals agreed very closely
(Figure 4.16c), which is typical in the context of a diffuse prior and a large
sample size. In contrast, fixed-effects intervals were overconfident when
based on the pooled sample accuracy and underconfident when based on
the average sample accuracy.

Another informative way of summarizing the posterior population mean
is to report the posterior probability mass that is below chance (e.g., 0.5 for
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Figure 4.17: Application to simulated data II. Continued from Figure 4.16.
(d) Posterior densities of the population precision (inverse variance). (e) The benefits
of a mixed-effects approach in subject-specific inference can be visualized by contrasting
the increase in dispersion (as we move from ground truth to sample accuracies) to the
corresponding decrease in dispersion (as we move from sample accuracies to posterior
means). This effect is a consequence of the hierarchical structure of the model, and it
accounts for better estimates of ground truth (cf. Figure 4.20e,j). Shrinking may change
the order of subjects since its extent depends on the subject-specific (first-level) poste-
rior uncertainty. (i,j) Same plots as in the top row, but based on a different simulation
setting with a much smaller number of subjects and a smaller and more heterogeneous
number of trials in each subject. The smaller size of the dataset enhances the merits of
mixed-effects inference over conventional approaches and increases the shrinkage effect
in subject-specific accuracies.

binary classification) which we refer to as the (posterior) infraliminal proba-
bility p of the classifier (cf. Section 4.3.2). Compared to a classical p-value, it
has a deceptively similar but arguably more natural interpretation. Rather
than representing the relative frequency of observing the observed outcome
(or a more extreme outcome) under the ‘null’ hypothesis of a classifier op-
erating at or below chance (classical p-value), the infraliminal probability
represents our posterior belief that the classifier does not perform better
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than chance. In the above simulation, we obtained p ≈ 10−10.
We next considered the true subject-specific accuracies and compared

them (i) with conventional sample accuracies and (ii) with VB posterior
means (Figure 4.17e). This comparison highlighted one of the principal
features of hierarchical models, that is, their shrinkage effect. Because of
the limited numbers of trials, sample accuracies exhibited a larger variance
than ground truth; accordingly, the posterior means, which were informed
by data from the entire group, appropriately compensated for this effect by
shrinking to the group mean. This shrinkage effect is obtained naturally in
a hierarchical model and, as we will see below, leads to systematically more
accurate posterior inferences at the subject level.

We repeated the above analysis on a sample dataset from a second sim-
ulation setting. This setting was designed to represent the example of a
small group with varying numbers of trials across subjects.12 Classification
outcomes were generated using the univariate normal-binomial model with
a population mean logit accuracy of µ = 2.2 and a low logit population
precision of λ = 1; the corresponding population mean accuracy was 87%
(Figure 4.16f).

Comparing the resulting posteriors (Figures 4.16g,h and 4.17i,j) to those
obtained on the first dataset, several differences are worth noting. Con-
cerning the population parameters (Figures 4.16g and 4.17i), all estimates
remained in close agreement with ground truth; at the same time, minor dis-
crepancies began to arise between variational and MCMC approximations,
with the variational results slightly too precise (Figures 4.16b and 4.17d).
This can be seen best from the credible intervals (Figure 4.16h, black). By
comparison, a striking example of an unreasonable inference can be seen in
the frequentist confidence interval for the population accuracy, which does
not only exhibit an optimistic shift towards higher performance but also
includes accuracies above 100% (Figure 4.16h, red).

Another typical consequence of a small dataset with variable trial num-
bers can be seen in the shrinkage of subject-specific inferences (Figure 4.17j).
In comparison to the first setting, there are fewer trials per subject, and so
the shrinkage effect is stronger. In addition, subjects with fewer trials (red)
are shrunk more than those with more trials (blue). Thus, the order be-
tween sample accuracies and posterior means has changed, as indicated by
crossing black lines. This attempt to restore the correct order of subjects

12Note that the heteroscedasticity in this dataset results both from the fact that sub-
jects have different numbers of trials and from the (simpler) fact that they have different
sample accuracies.
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Figure 4.18: Estimation error and computational complexity. VB and MCMC
differ in the way estimation error and computational complexity are balanced. The plot
shows estimation error in terms of the absolute difference of the posterior mean of the
population mean accuracy in percentage points (y-axis). Computational complexity is
shown in terms of the number of floating point operations (FLOPs) consumed. VB
converged after 370 000 FLOPs (update < 10−6) to a posterior mean of the population
mean accuracy of 73.5%. Given a true population mean of 73.9%, the estimation error
of VB was −0.4 percentage points. In contrast, MCMC used up 1.47 × 109 FLOPs to
draw 10 000 samples (excluding 100 burn-in samples). Its posterior mean estimate was
73.6%, implying an error of −0.26 percentage points. Thus, while MCMC ultimately
achieved a marginally lower error (by 0.13 percentage points), VB was computationally
more efficient by 4 orders of magnitude. It should be noted that the plot uses log-log
axes which provide a conservative view on the differences between the two algorithms;
they would be visually even more striking on a linear scale.

can become important, for example, when one wishes to relate subject-
specific accuracies to other subject-specific measures, such as behavioural,
demographic, or genetic information.

The primary advantage of VB over sampling algorithms is its compu-
tational efficiency. To illustrate this, we examined the computational load
required to invert the normal-binomial model on the dataset shown in Fig-
ure 4.16a. Rather than measuring computation time (which is platform-
dependent), we considered the number of floating-point operations (FLOPs),
which we related to the absolute error of the inferred posterior mean of the
mean population accuracy (in percentage points; Figure 4.18). We found
that MCMC used 4 000 times more arithmetic operations to achieve an
estimate that was better than VB by no more than 0.13 percentage points.
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Figure 4.19: Application to a larger number of simulations I. (a) One example
of 1 000 simulations of synthetic classification outcomes (for an individual analysis of
this example, see Figures 4.16 and 4.16, top row). (b) Specificity of competing meth-
ods for testing whether the population mean accuracy is greater than chance, given a
true population mean of 0.5. (f,g) Same analyses as above, but based on smaller experi-
ments (cf. Figures 4.16 and 4.17, bottom row). For details, see main text. Continued in
Figure 4.20.

4.7.2 Application to a larger number of simulations

Moving beyond the single case examined above, we replicated our analy-
sis many times while varying the true population mean accuracy between
0.5 and 0.9. For each point, we ran 1 000 simulations. This allowed us
to examine the properties of our approach from a frequentist perspective
(Figures 4.19 and 4.20).

In the first setting (Figures 4.19 and 4.20, top row), each simulation was
based on synthetic classification outcomes from 30 subjects with 200 trials
each, as described in the previous section. One of these simulations is shown
as an example (Figure 4.19a; the same one as in Figure 4.16a), whereas all
subsequent plots are based on 1 000 independent datasets generated in the
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Figure 4.20: Application to a larger number of simulations II. Continued from
Figure 4.19. (c,d) Power curves with different test sizes, testing whether the population
mean accuracy is greater than chance, given different true population mean accuracies.
(e) Comparison of maximum-likelihood estimator (blue), James-Stein estimator (red),
and Bayes estimator (black) in terms of the mean squared difference between the esti-
mate and ground truth. The three graphs show mean and standard errors across 1 000
simulations. (h–j) Same analyses as above, but based on smaller experiments (cf. Fig-
ures 4.16 and 4.17, bottom row). For details, see main text.

same way.
We began by asking, in each simulation, whether the population mean

accuracy was above chance (0.5). We answered this question by computing
p-values using one of the following five methods: (i) fixed-effects inference
based on a binomial test on the pooled sample accuracy (orange); (ii) fixed-
effects inference based on a binomial test on the average sample accuracy
(violet); (iii) mixed-effects inference using VB (solid black); (iv) mixed-
effects inference using MCMC (dotted black); (v) random-effects inference
using a t-test on subject-specific sample accuracies (red).

The principal property of inferential conclusions (whether frequentist or
Bayesian) is their validity with respect to a given test size. For example,
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when using a test size of α = 0.05, we expect the test statistic to be at
or beyond the corresponding critical value for the ‘null’ hypothesis (of the
classification accuracy to be at or below the level of chance) in precisely
5% of all simulations. We thus plotted the empirical specificity, i.e., the
fraction of false rejections, as a function of test size (Figure 4.19b). For any
method to be a valid test, p-values should be uniformly distributed on the
[0, 1] interval under the ‘null’; thus, the empirical cumulative distribution
function should approximate the main diagonal.

As can be seen from the plot, the first method violates this requirement
(fixed-effects analysis, orange). It pools the data across all subjects; as
a result, above-chance performance is concluded too frequently at small
test sizes and not concluded frequently enough at larger test sizes. In other
words, a binomial test on the pooled sample accuracy is an invalid procedure
for inference on the population mean accuracy.

A second property of inference schemes is sensitivity or statistical power
(Figure 4.20c,d). An ideal test (falsely) rejects the null with a probability
of α when the null is true, and always (correctly) rejects the null when it
is false. Such a test is only guaranteed to exist in the limit of an infinite
amount of data. Thus, given a finite dataset, we can compare the power of
different inference methods by examining how quickly their rejection rates
rise once the null is no longer true. We carried out 1 000 simulations for
each level of true population mean accuracy (0.5, 0.6, . . . , 0.9) and plotted
empirical rejection rates for two common test sizes: α = 0.05 (Figure 4.20c);
and α = 0.001 (Figure 4.20d). The smaller the test size, the more striking
the differences between different methods. This is because a small test size
implies that the critical values are located in the tails of the null distribution,
which is particularly poorly approximated by Student’s t-distribution.13

Finally, we examined VB when estimating subject-specific accuracies.
We compared three estimators: (i) posterior means of σ(ρj) using VB;
(ii) posterior means πj using MCMC; and (iii) sample accuracies. The
plot shows that posterior estimates based on a mixed-effects model led to
a slightly smaller estimation error than sample accuracies. This effect was
small in this scenario but became substantial when considering a smaller
dataset, as described next.

In the second setting (Figures 4.19 and 4.20, bottom row), we carried out
the same analyses as above, but based on small datasets of just 8 subjects

13The above simulation could also be used for a power analysis to assess what popu-
lation mean accuracy would be required to reach a particular probability of obtaining a
positive (above-chance) finding.
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with different numbers of trials (Figure 4.19f). Regarding test specificity,
as before, we found fixed-effects inference to yield severely over-optimistic
inferences at low test sizes (Figure 4.19g).

The same picture emerged when looking at sensitivities (Figure 4.20h,i).
Again, fixed-effects inference on the pooled sample accuracy yielded over-
confident results; it systematically rejected the null hypothesis too easily.
By contrast, fixed-effects inference on averaged data led to overly pessimistic
inferences, rejecting not frequently enough (violet). A conventional t-test
is a valid test, with no more false positives under the null than prescribed
by the test size (red). However, it was outperformed by a mixed-effects
approach (black), whose rejection probability rises more quickly when the
null is no longer true, thus offering greater statistical power than the t-test.

Finally, subject-specific inferences benefitted substantially from a mixed-
effects model when the data were limited in size (Figure 4.20j). This effect
is due to the fact that subject-specific posteriors are informed by data from
the entire group, whereas sample accuracies are only based on the data from
an individual subject.

4.7.3 Accuracies versus balanced accuracies
The classification accuracy of an algorithm (obtained on an independent
test set or through cross-validation) can be a misleading measure of gener-
alization ability when the underlying data are not perfectly balanced. To
resolve this problem, we use a straightforward extension of our model, the
twofold normal-binomial model, that enables inference on balanced accura-
cies. To illustrate the differences between the two quantities, we replicated
an analysis from a previous study in which we generated a typically imbal-
anced synthetic dataset and used a linear support vector machine (SVM)
for classification (Figure 4.21; for details, see Section 4.4.6).

We observed that, as expected, the class imbalance caused the classifier
to acquire a bias in favour of the majority class. This can be seen from
the raw classification outcomes in which many more positive trials (green)
than negative trials (red) were classified correctly, relative to their respective
prevalence in the data (Figure 4.21a). The bias is reflected accordingly by
the estimated bivariate density of class-specific classification accuracies, in
which the majority class consistently performed well whereas the accuracy
on the minority class varies hugely (Figure 4.21b). In this setting, we found
that the twofold normal-binomial model provided an excellent estimate of
the true balanced accuracy (Figure 4.21c). In stark contrast, using the single
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Figure 4.21: Imbalanced data and the balanced accuracy. (a) Classification out-
comes obtained by applying a linear support vector machine (SVM) to synthetic data,
using leave-one-out cross-validation. The plot shows, for each subject, the number of
correctly classified positive (green) and negative (red) trials, as well as the respective
total number of trials (grey). (b) Sample accuracies on positive (TPR) and negative
classes (TNR). The underlying true population distribution is represented by a bivariate
Gaussian kernel density estimate (contour lines). The plot shows that the population
accuracy is high on positive trials and low on negative trials; the imbalance in the data
has led the SVM to acquire a bias in favour of the majority class. (c) Central 95% pos-
terior probability intervals of the population mean accuracy and the balanced accuracy.
Inference on the accuracy is misleading, while the balanced accuracy interval provides a
sharply peaked estimate of the true balanced accuracy.

normal-binomial model to infer on the population accuracy (as opposed to
balanced accuracy) resulted in estimates that were severely optimistic and
therefore misleading.

4.7.4 Application to fMRI data
To demonstrate the practical applicability of VB, we analysed data from
an fMRI experiment involving 16 volunteers who participated in a simple
decision-making task (Figure 4.22). During the experiment, subjects had
to choose, on each trial, between two options that were presented on the
screen. Decisions were indicated by button press (left/right index finger).
Details on experimental design, data acquisition, and preprocessing can be
found elsewhere (Behrens et al., 2007). Here, we aimed to decode (i.e.,
classify) from fMRI measurements which option had been chosen on each
trial. Because different choices were tied to different buttons, we expected
highly discriminative activity in the primary motor cortex.

Separately for each subject, a general linear model (Friston et al., 1995)
was used to create a set of parameter images representing trial-specific es-
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Figure 4.22: Application to empirical fMRI data I: overall classification per-
formance. (a) Classification outcomes obtained by applying a linear SVM to trial-wise
fMRI data from a decision-making task. (b) Posterior population mean accuracy, in-
ferred on using variational Bayes. (c) Posterior population precision. (d) Subject-specific
posterior inferences. The plot contrasts sample accuracies with central 95% posterior
probability intervals, which avoid overfitting by shrinking to the population mean.

timates of evoked brain activity in each volume element. These images
entered a linear support vector machine (SVM) that was trained and tested
using leave-one-out cross-validation. Comparing predicted to actual choices
resulted in 120 classification outcomes for each of the 16 subjects (Fig-
ure 4.22a).

Using the univariate normal-binomial model for inference on the popu-
lation mean accuracy, we obtained clear evidence (infraliminal probability
p < 0.001) that the classifier was operating above chance (Figure 4.22b).
The variational posterior population mean accuracy (posterior mean 73.7%;
Figure 4.22c) agreed closely with an MCMC-based posterior (73.5%; not
shown). Inference on subject-specific accuracies yielded fairly precise pos-
terior intervals with a noticeable shrinking effect (Figure 4.22d).



116 Discussion

The overall computation time for the above VB inferences was approx-
imately 7 ms. This enormous speedup in comparison to previous MCMC
algorithms makes it feasible to construct whole-brain maps of above-chance
accuracies. We illustrate this using a searchlight classification analysis
(Nandy and Cordes, 2003; Kriegeskorte et al., 2006). In this analysis, we
passed a sphere (radius 6 mm) across the brain and, at each location, trained
and tested a linear SVM using leave-10-out cross-validation. We associated
the voxel at the centre of the current sphere with the number of correct
predictions in each subject (i.e., k1:16 ∈ N16). We then used our VB algo-
rithm to compute a whole-brain posterior accuracy map (PAM; Figure 4.23).
Comprising 220 000 voxels, the map needed no more than 7 min 18 s un-
til completion (while an MCMC-based solution would have taken 31 days).
The map shows the posterior population mean accuracy in those voxels with
an infraliminal probability of less than 0.1%. Thus, the map highlights re-
gions with a posterior probability of the classifier operating above chance
at the group level that is at least 99.9%.

4.8 Discussion
Canonical classification algorithms are frequently used on multilevel or hi-
erarchically structured datasets, where a classifier is trained and tested for
each subject within a group. This chapter showed how the evaluation of clas-
sification performance in this setting may benefit from mixed-effects models
that explicitly capture the hierarchical structure of the data. We organize
the following discussion around the principal features of this approach.

Replacing fixed-effects by mixed-effects models. The primary con-
tribution of this chapter is the introduction and analysis of several models
for mixed-effects inference for group-level classification studies. To cap-
ture the two sources of variation in two-level hierarchical datasets, we si-
multaneously account for fixed-effects (within-subjects) and random-effects
(across-subjects) variance components. This idea departs from previous
models which are widely used for classification studies but ignore within-
or between-subjects variability. Fixed-effects models make inappropriate
assumptions and yield overconfident inference. Conversely, random-effects
models treat subject-specific sample accuracies as observed, rather than in-
ferred, and thus omit uncertainty associated with such sample accuracies.

The mixed-effects models considered in this chapter ensure that known
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(a) Conventional sample accuracy map (SAM)  thresholded at 𝑝 <  0.001 (t-tests, unc.) 

(b) Bayesian posterior accuracy map (PAM)  thresholded at 𝑝 𝜋 > 0.5 > 0.999 (unc.) 

Figure 4.23: Application to empirical fMRI data II: posterior accuracy map.
(a) A conventional sample accuracy map (SAM) highlights regions in which a one-tailed
t-test on subject-specific sample accuracies yielded p < 0.001 (uncorrected). (b) Using the
VB algorithm presented in this chapter, we can instead create a posterior accuracy map
(PAM), which highlights those regions in which the posterior accuracy of the classification
algorithm operating above chance is greater than 99.9%.

dependencies between inferences on subject-specific accuracies are coher-
ently accommodated within an internally consistent representation of the
data. Specifically, the posterior distribution of the accuracy of one subject
is partially influenced by the data from all other subjects, correctly weighted
by their respective posterior precisions (see Section 4.3.3). Thus, the avail-
able group data are exploited to constrain individual inference appropriately.
Non-hierarchical models, by contrast, risk being under-parameterized (i.e.,
their degrees of freedom are insufficient to fit data) or over-parameterized
(i.e., they are prone to overfitting the data and generalize poorly). Hierar-
chical models overcome this problem in a natural way: they regularize the
inversion problem by replicating the structural dependencies that govern
the observed data.

The hierarchical models presented in this chapter are motivated by two-
level designs that distinguish between inference at the subject level and
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inference at the group level. However, it should be noted that these models
can be easily extended to accommodate multi-level studies. For example, in
order to model classification performance in different task conditions or in
different sessions, one could introduce separate latent accuracies πaj , πbj , . . .,
all of which are drawn from a common subject-specific accuracy πj . In
this way, one would explicitly model task- or session-specific accuracies to
be conditionally independent from one another given an overall subject-
specific effect πj and conditionally independent from other subjects given
the population parameters. This example shows that additional relation-
ships between portions of the acquired data can be naturally expressed in
a hierarchical model to appropriately constrain inferences.

Finally, it is worth noting that mixed-effects models are not only use-
ful when evaluating a classifier but also when designing it. For instance,
Schelldorfer et al. (2010) proposed a linear mixed-effects model for classi-
fication that accounts for different sources of variation in the data. The
model has been shown to improve classification performance in the domain
of brain-computing interfaces (Fazli et al., 2011).

Replacing frequentist by Bayesian inference. The second feature of
our approach is to provide Bayesian alternatives to the frequentist proce-
dures that have been dominating classification group studies so far. Al-
though these two schools share commonalities, there are deep conceptual
differences. Frequentist approaches consider the distribution of an estima-
tor as a function of the unknown true parameter value and view probabilities
as long-term frequencies; estimation yields point estimates and confidence
intervals, while inference takes the form of statements on the probability of
estimator values under a ‘null hypothesis.’ Bayesian methods, by contrast,
consider the subjective belief about a parameter, before and after having
observed the data, drawing on probability theory to optimally quantify in-
ferential uncertainty.

An advantage of Bayesian inference is that a hierarchical data structure
can be particularly easily translated into a corresponding hierarchical model,
accomplishing mixed-effects inference naturally (see above).

An additional advantage of Bayesian approaches is that one can evaluate
different models (e.g., alternative distributional assumptions) by comparing
their respective model evidences, even when the models are non-nested. For
example, in Section 4.4.5 we showed how alternative a priori assumptions
about the population covariance of class-specific accuracies can be evaluated
using Bayesian model selection.
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In practice, our approach may also help avoid erroneous interpretations
of inferential results. For example, the posterior infraliminal probability in-
troduced in Section 4.3.2 has an arguably more natural and less error-prone
interpretation than a classical p-value. Instead of denoting the probability
of observing the data (or more extreme data) under the null hypothesis of
a chance classifier (classical p-value), the infraliminal probability represents
what we are ultimately interested in: the (posterior) probability that the
classifier operates below (or above) chance given the data.

It is worth noting that classical inference does not necessarily have to
assume the form currently prevalent in the evaluation of hierarchical clas-
sification studies. For example, the t-test that is presently used by the
large majority of classification analyses could be replaced by a classical
mixed-effects model. This would require two things. Firstly, the defini-
tion of a decision statistic, e.g., the fraction of correctly classified trials,
pooled across subjects, or more simply, a hierarchical model such as the
beta-binomial model, but estimated using maximum-likelihood estimation
(for an example using logistic regression, see Dixon, 2008). Secondly, an
inference scheme: under the null hypothesis that the classifier performs at
chance, the number of correctly/incorrectly classified trials can be swapped
across subjects; this would provide a permutation mechanism to test the
significance of the decision statistic.

An advantage of the above frequentist scheme would be that it no longer
requires an assumption common to all other approaches considered in this
chapter: the assumption that trial-wise classification outcomes yi are con-
ditionally independent and identically distributed (i.i.d.) given a subject-
specific accuracy π. This is typically justified by assuming that, in a classi-
fication analysis, test observations are i.i.d. themselves, conditional on the
parameters of the latent process that generated the data. The situation is
less clear in a cross-validation setting, where, strictly speaking, classification
outcomes are no longer independent of one another (Gustafsson et al., 2010;
Kohavi, 1995; Wickenberg-Bolin et al., 2006). However, because violations
of i.i.d. assumptions lead to conservative inference when controlling false
positive rates, the i.i.d. assumption has generally not been a major concern
in the literature. If trial-by-trial dependence is an issue, then one possibility
is to resort to a single-split scheme, by training on one half of the data, and
testing on the other.

Replacing the accuracy by the balanced accuracy. The third fea-
ture of our approach is its flexibility with regard to performance measures.



120 Discussion

While it is common to compare algorithms with regard to their accuracy,
the limitations of this metric are well-known. For example, when a classifier
is tested on an imbalanced dataset, the accuracy may be inflated and lead
to false conclusions about the classifier’s performance. There are different
potential solutions to this problem (Akbani et al., 2004; Chawla et al., 2002;
Japkowicz and Stephen, 2002). One can, for example, restore balance by
undersampling the large class or by oversampling the small class, or mod-
ify the costs of misclassification (Zhang and Lee, 2008). A more generic
safeguard is to replace the accuracy with the balanced accuracy, defined
as the arithmetic mean of the class-specific accuracies. Unlike the measure
described by Velez et al. (2007), the balanced accuracy is symmetric with
respect to the type of class. If desired, this symmetry assumption can of
course be dropped by introducing class-specific misclassification costs.

Fundamentally, accuracies and balanced accuracies differ because they
address different scientific questions. Inference on the accuracy is asking:
what is the probability of making a correct prediction on a trial randomly
drawn from a distribution with the same imbalance as that present in the
current training set? Inference on the balanced accuracy, by contrast, is ask-
ing: what is the probability of a correct prediction on a trial that is equally
likely, a priori, to belong to either class? This is what we are typically
interested in when assessing the presence of a statistical link between data
features and labels: the expected accuracy under a flat prior over classes.

Notably, the balanced accuracy is not confined to binary classification
but can be easily generalized to K classes, by redefining it as the arithmetic
mean of allK class-specific accuracies. For the twofold beta-binomial model,
one could then replace π+ and π− by π(1), π(2), . . . , π(K), whereas for the
normal-binomial model, the bivariate normal distribution would be replaced
by a K-dimensional normal distribution.

Using the example of the balanced accuracy, we have described how hi-
erarchical models enable Bayesian inference on performance measures other
than the accuracy. We also demonstrated that there may be multiple plau-
sible models a priori. In this case, Bayesian model selection can be used to
decide between competing models. Alternatively, Bayesian model averaging
produces predictions which account for posterior model uncertainty. This
approach can be adopted with any other performance measure of interest.14

14It should be noted that, in this context, model selection is carried out to ask which
model best explains observed classification outcomes. This is different from asking what
sort of model (i.e., classification algorithm) might be best at classifying the data in the
first place.
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The choice of a versatile yet convenient parameterization of the distri-
butions for class-specific accuracies π+ and π− has been a recurring theme
in the literature. Whereas early treatments adopted an empirical Bayes ap-
proach (e.g., Albert, 1984; Good, 1956; Griffin and Krutchkoff, 1971), the
more recent literature has discussed various fully hierarchical approaches
(see Agresti and Hitchcock, 2005, for an overview). For instance, Leonard
(1972) proposed to replace independent Beta priors on each element of π
such as those in (4.4.1) by independent normal priors on each element of
logit(π). While this is analytically convenient, it requires independence as-
sumptions in relation to the elements of π. This limitation was addressed
by Berry and Christensen (1979), who placed a Dirichlet process prior on
the elements of π. A related approach was proposed by Albert and Gupta
(1983), who used Beta priors on the components of π such that their de-
gree of correlation could be controlled by a common hyperparameter. As
mentioned above, a principled way of evaluating such different propositions
rests upon Bayesian model comparison (MacKay, 1992; Madigan and York,
1997; Penny et al., 2004), which we illustrated by deciding between alter-
native parameterizations for inference on the balanced accuracy.

A similar approach to the one discussed in this thesis has been suggested
by Olivetti et al. (2012), who carry out inference on the population mean
accuracy by comparing two beta-binomial models: one with a population
mean prior at 0.5 (i.e., chance), and one with a uniform prior on the inter-
val [0.5, 1]. Inference then takes the form of model selection, resulting in a
Bayes factor and its conventional interpretation (Kass and Raftery, 1995).
Our approach differs from the above work in four ways: (i) in addition to
classification accuracy, we consider the balanced accuracy, which is a more
useful performance measure whenever the data are not perfectly balanced,
and for which we offer different parameterizations that can be optimized us-
ing Bayesian model selection; (ii) we explicitly frame our approach in terms
of fixed-effects (FFX), random-effects (RFX), and mixed-effects (MFX) in-
ference, and we provide the respective graphical models; (iii) we emphasize
the use of uninformative priors on the interval [0, 1] to obtain unbiased pos-
terior estimates, which allows us to use infraliminal probabilities for infer-
ence; (iv) finally, we provide extensive simulation results that demonstrate
the differences between FFX, RFX, and MFX approaches, shrinkage effects,
and reduced estimation risks.

Replacing stochastic by deterministic inference. Continual advances
in computing power might suggest that the importance of computational ef-
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ficiency should become less critical; but the converse is true. New analysis
ideas keep increasing the importance of fast algorithms. One example is
provided by large-scale analyses such as searchlight approaches (Nandy and
Cordes, 2003; Kriegeskorte et al., 2006), in which we must potentially eval-
uate as many classification outcomes as there are voxels in a whole-brain
scan.

Using variational Bayes, as we did in this chapter, makes it possible
to create whole-brain maps of posterior mean accuracies, thresholded by
infraliminal probabilities (Figure 4.23). Ignoring the time taken by the
classification algorithm itself, merely turning classification outcomes into
posterior accuracies would have taken no less than 31 days when using
an MCMC sampler with 30 000 samples for each voxel. By contrast, all
computations were completed in less than 8 minutes when using variational
Bayes, as we did in Figure 4.23.

Sampling approaches to Bayesian inference come with a range of other
practical challenges, such as: how to select the number of required samples;
how to check for convergence; how long to run the burn-in period for; how
to choose the proposal distribution in Metropolis steps; how many chains to
run in parallel; and how to design overdispersed initial parameter densities.
By contrast, deterministic approximations such as VB involve much fewer
practical engineering considerations. Rather, they are based on a set of
distributional assumptions that can be comprehensively captured in a simple
graphical model (cf. Figures 4.13 and 4.15) and compared to competing
assumptions by means of Bayesian model comparison.

Thus, the second half of this chapter is fundamentally based on an idea
that has been at the heart of many recent innovations in the statistical
analysis of neuroimaging data: the idea that minor reductions in statistical
accuracy can be safely accepted in return for huge increases in computa-
tional efficiency.

Mixed-effects inference in other analysis domains. Leaving clas-
sification studies aside for a moment, it is instructive to remember that
mixed-effects inference and Bayesian estimation approaches have been suc-
cessfully employed in other domains of analysis (Figure 4.24). In particu-
lar, as touched upon in Section 4.1 on p. 61, mass-univariate fMRI analy-
ses based on the general linear model, too, were initially evaluated using
fixed-effects models before these were replaced by random-effects and full
mixed-effects alternatives (Holmes and Friston, 1998; Friston et al., 1999;
Beckmann et al., 2003; Woolrich et al., 2004; Friston et al., 2005; Mumford
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Figure 4.24: Analogies between mixed-effects models in neuroimaging. (a) The
first broadly adopted models for mixed-effects inference and Bayesian estimation in neu-
roimaging were developed for mass-univariate fMRI analyses based on the general linear
model. The figure shows a graphical representation of the summary-statistics approxima-
tion to mixed-effects inference. (b) Mixed-effects inference have subsequently also been
developed for group studies based on dynamic causal modelling. (c) The present chapter
addresses very similar issues, but in a different context, that is, in group analyses based
on trial-by-trial classification. For details on variables, see references in the main text.

and Nichols, 2009). A parallel development in the domain of mass-univariate
analyses has been the complementation of classical maximum-likelihood in-
ference by Bayesian approaches (e.g., in the form of posterior probability
maps; Friston, 2002).

Another example are group analyses on the basis of dynamic causal mod-
elling (Friston et al., 2003), where fixed-effects inference has been supple-
mented by random-effects inference that is more appropriate when different
models are optimal in characterizing different subjects in a group (Stephan
et al., 2009a). The present chapter addresses very similar issues, but in a
different context, that is, in group analyses based on trial-by-trial classifica-
tion. In both cases, an approximate but efficiently computable solution to a
mixed-effects model (i.e., hierarchical VB) is preferable to an exact estima-
tion of a non-hierarchical model that disregards variability at the subject
or group level.

Summary of present results and conclusions. We hope that the mod-
els for Bayesian mixed-effects analyses introduced in this chapter will find
widespread use. The VB approach in particular, proposed in the second half
of this chapter, is as easy to use as a t-test, but conveys multiple advan-
tages over contemporary fixed-effects and random-effects analyses. These
advantages include: (i) posterior densities as opposed to point estimates of
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parameters; (ii) increased sensitivity (statistical power), i.e., a higher proba-
bility of detecting a positive result, especially with small sample sizes; (iii) a
‘shrinking-to-the-population’ effect whose regularization leads to more pre-
cise subject-specific accuracy estimates; and (iv) posterior accuracy maps
(PAM) which provide a mixed-effects alternative to conventional sample
accuracy maps (SAM).

To facilitate the use of our approach, an open-source implementation of
all models discussed in this chapter, including a step-by-step documenta-
tion, is available for download.15 With this toolbox we hope to assist in
improving the statistical sensitivity and correct interpretation of results in
future classification group studies.

15For an implementation in MATLAB, see http://mloss.org/software/view/407/. An
R package is currently in preparation.



Chapter 5

Model-based classification

In order to establish its potential utility for dissecting spectrum disorders,
we must critically demonstrate that generative embedding may indeed be
used to accurately relate measures of neural activity to an external label.
This is the ambition of model-based classification. In this chapter, we pro-
pose and put to test a concrete implementation using a combination of
dynamic causal models (DCM) and support vector machine (SVM) clas-
sifiers. For corresponding publications, see Brodersen et al. (2011a) and
Brodersen et al. (2011b).

Model-based classification (or decoding) based on generative embedding
comprises six conceptual steps (Figure 5.1). As described in Chapter 1, the
first three steps are: the extraction of time series; inversion of a generative
model; and embedding in a generative score space (see p. 21). The remaining
three steps are analysis-specific, as described below.

4. A classification algorithm is trained and tested on a group of trials
or subjects. Crucially, the only features submitted to the algorithm
are parameter estimates provided by model inversion, e.g., posterior
means. One could extend this, for example, by considering the full set
of sufficient statistics of the conditional densities, e.g., by including
the covariance matrix of a multivariate Gaussian density.

5. The classification accuracy of the approach is evaluated and compared
to alternative algorithms. The accuracy can be viewed as the degree
to which the biologically informed model has captured differences be-
tween classes.
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Figure 5.1: Model-based classification. The concrete implementations proposed
in this chapter will use DCM as a generative model and a linear SVM as a discrimina-
tive classifier. While DCM is a natural (and presently the only) candidate for obtaining
model-based estimates of synaptic plasticity (cf. Stephan et al., 2008; den Ouden et al.,
2010), the most widely used approach to classification relies on discriminative methods,
such as support vector machines (SVM; Müller et al., 2001; Schölkopf and Smola, 2002).
Together, DCM and SVM methods thus represent natural building blocks for classifica-
tion of disease states.

6. The weights which the classifier has assigned to individual features
are reconstructed and interpreted as the degree to which individual
biophysical model parameters have proven informative (in the context
of all features considered) in distinguishing between classes.

Advantages over conventional classification schemes. Generative
embedding for model-based classification may offer three substantial advan-
tages over conventional classification methods. First, because the approach
aims to fuse the strengths of generative models with those of discriminative
methods, it may outperform conventional voxel-based schemes, especially in
those cases where crucial discriminative information is encoded in ‘hidden’
quantities such as directed (synaptic) connection strengths.

Second, the construction of the feature space is governed and constrained
by a biologically motivated systems model. As a result, feature weights can
be interpreted mechanistically in the context of this model. Incidentally,
the curse of dimensionality faced by many conventional feature-extraction
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methods may turn into a blessing when using generative embedding: the
higher the temporal and spatial resolution of the data, the more precise
the estimation of the parameters of the generative model, leading to better
discriminability.

Third, our approach can be used to compare alternative generative
model architectures in situations where evidence-based approaches, such
as Bayesian model selection, are not applicable. We will deal with these
three points in more detail in Chapter 7.

Overview. This chapter is organized as follows. We begin by detailing
two methodological aspects of model-based classification: the incorporation
of a generative kernel into a discriminative classifier (Section 5.1), and the
reconstruction of feature weights (Section 5.2).

As an initial proof of concept, we illustrate the utility of model-based
classification in the context of two independent electrophysiological datasets
obtained in rats. The first dataset is based on a simple whisker stimula-
tion experiment (Section 5.3); the second dataset is an auditory mismatch-
negativity (MMN) paradigm (Section 5.4). In both cases, the aim is to
predict, based on single-trial neural activity, which type of stimulus was
administered on each trial.

We then turn to a clinical example based on an fMRI dataset acquired
from moderately aphasic patients and healthy controls. We illustrate that
our approach, now applied to a subject-by-subject classification setting,
enables more accurate classification and deeper mechanistic insights about
disease processes than conventional classification methods (Section 5.5). Fi-
nally, we discuss the key features of the proposed methods and outline future
directions (Section 5.6).

5.1 Classification using a generative kernel
While a kernel describes how two subjects can be compared using a gen-
erative model of their fMRI data (cf. Section 2.5), it does not specify how
such a comparison could be used for making predictions. This gap is filled
by discriminative classification methods. A natural choice is the `2-norm
soft-margin support vector machine (SVM), which currently represents the
most widely used kernel method for classification (Boser et al., 1992).

Many classification methods attempt to find a function that separates
examples as accurately as possible in a space of features (e.g., voxel-wise
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Figure 5.2: Generative, discriminative, and discriminant classifiers. Generative
classifiers model the full joint probability p(x, y) of data x and labels y and then derive
p(y | x) using Bayes’ theorem. Discriminative classifiers can be conceptually split up
into those relying on a discriminative model p(y | x) which is estimated directly, without
requiring Bayes’ theorem; and those which find a discriminant function for mapping an
example x onto a class label y directly, without invoking probability theory altogether.
In this chapter, we will mostly use discriminant classifiers such as the support vector
machine.

measurements). Such discriminative classification methods (sometimes re-
ferred to as discriminant models) differ from generative methods in two ways
(Figure 5.2). First, rather than trying to estimate the joint density of ob-
servations and class labels (which is not needed for classification) or trying
to estimate class-conditional probability densities (which can be difficult)
discriminative classifiers directly model the class an example belongs to.

In binary classification, for instance, we are given a training set of n
examples xi ∈ Rd along with their corresponding labels yi ∈ {−1,+1}. A
learning algorithm might attempt to find a discriminant function f ∈ F
from some hypothesis space F such that the classifier

h(x) := sgn(f(x)) (5.1.1)

minimizes the overall loss
∑n
i=1 `(yi, f(xi)). The loss function `(y, f(x)) is

usually designed to approximate the unknown expected loss (or risk)

R[f ] = EX,Y [`(Y, f(X)] (5.1.2)

where X and Y denote the random variables of which the given examples
(xi, yi) are realizations.

A frequent characteristic of discriminative methods is that many of them
are designed not to operate on examples themselves. Rather, they are based
on the similarity between any two examples, expressed as the inner product
between their feature vectors. This ‘kernel trick’ provides an elegant way of
transforming a linear classifier into a more powerful nonlinear one.
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The most popular classification algorithm of the above kind is the `2-
norm soft-margin SVM (Müller et al., 2001; Schölkopf and Smola, 2002;
Boser et al., 1992; Ben-Hur et al., 2008). This algorithm learns to discrimi-
nate between two groups of subjects by estimating a separating hyperplane
in their feature space. The only way in which examples xi ∈ Rd enter an
SVM is in terms of an inner product xT

i xj . This product can be replaced
by the evaluation k(xi, xj) of a kernel function

k : Rd × Rd → R, (5.1.3)

which implicitly computes the inner product between the examples in a new
feature space, φ(xi)Tφ(xj).

5.2 Reconstruction of feature weights
Most classification algorithms can not only be used to obtain predictions
and an estimate of the generalization error that may be expected on new
data. Once trained, most algorithms also indicate in one way or another
which features contributed most to the overall performance attained. In
cognitive neuroscience, such feature weights can be of much greater interest
than the classification accuracy itself.

In contemporary decoding approaches applied to fMRI, for example,
features usually represent individual voxels. Consequently, a map of fea-
ture weights projected back onto the brain (or, in the case of searchlight
procedures, accuracies obtained from local neighbourhoods) may, in prin-
ciple, reveal which voxels in the brain the classifier found informative (cf.
Kriegeskorte et al., 2006). However, this approach is often limited to the
degree to which one can overcome the two challenges outlined in Chapter 1:
the problem of feature selection and the problem of meaningful interpreta-
tion. Not only is it very difficult to design a classifier that manages to learn
the feature weights of a whole-brain feature space with a dimensionality
of 100 000 voxels; it is also not always clear how the frequently occurring
salt-and-pepper information maps should be interpreted.

In contrast, using a feature space of biophysically motivated parameters
provides a new perspective on feature weights. Since each parameter is
associated with a specific biological role, their weights can be naturally
interpreted in the context of the underlying model.

In the case of a soft-margin SVM (Figure 5.3), reconstruction of the fea-
ture weights is straightforward, especially when features are non-overlapping.
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Figure 5.3: Linear and nonlinear support vector machine. (a) A linear SVM finds
a maximum-margin hyperplane to separate two groups of data points. (b) A nonlinear
SVM solves the exact same problem but operates in a transformed feature space that is
implicitly induced by a kernel function. The advantage of a linear SVM is that there is
a simple one-to-one relationship between features and feature weights, which facilitates
interpretability.

Here, we briefly summarize the main principles to highlight issues that are
important for generative embedding (for further points, see Ben-Hur et al.,
2008).

We begin by recalling the optimization problem that the algorithm solves
during training:

min
w,b

wTw + C

n∑
i=1

ξi (5.2.1)

s.t. ξi ≥ 1− yi(wTxi + b) ∀i = 1, . . . , n (5.2.2)
ξi ≥ 0, (5.2.3)

where w and b specify the separating hyperplane, ξi are the slack variables
that relax the inequality constraints to tolerate misclassified examples, and
C is the misclassification penalty. The soft-margin minimization problem
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can be solved by maximizing the corresponding Lagrangian,

max
w,b,λ,α

L(w, b, λ, α) = 1
2w

Tw + C

n∑
i=1

ξi

+
n∑
i=1

αi
(
1− yi

(
wTxi + b

)
− ξi

)
+ λT(−ξ). (5.2.4)

In order to solve the Lagrangian for stationary points, we require its partial
derivatives to vanish:

∂L
∂w

= w −
n∑
i=1

yiαixi = 0 (5.2.5)

∂L
∂b

= −
n∑
i=1

yiαi = 0 (5.2.6)

Rearranging the condition in (5.2.5) shows that the vector of feature weights
w can be obtained by summing the products yiαixi,

w =
n∑
i=1

yiαixi, (5.2.7)

where xi ∈ Rd is the ith example of the training set, yi ∈ {−1,+1} is its true
class label, and αi ∈ R is its support-vector coefficient. More generally, when
using a kernel k(x, y) = φ(x)Tφ(y) with an explicit feature map φ(x) that
translates the original feature space into a new space, the feature weights
are given by the d-dimensional vector

w =
n∑
i=1

yiαiφ(xi). (5.2.8)

For example, in the case of a polynomial kernel of degree p, the kernel
function

k(x, y) = (axTy + b)p (5.2.9)

with real coefficients a and b transforms a d-dimensional variable space into
a feature space with

d′ =
(
d+ p

p

)
− 1 (5.2.10)
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dimensions that are not a constant (cf. Shawe-Taylor and Cristianini, 2004).
In the case of two-dimensional examples x = (x1, x2)T and a polynomial
kernel of degree p = 2, for instance, the resulting explicit feature map is
given by

φ2(x) =
(
a,
√

2abxi,
√

2abx2, bx
2
1,
√

2bx1x2, bx
2
2

)T
. (5.2.11)

Features constructed in this way do not always provide an intuitive un-
derstanding. Even harder to interpret are features resulting from kernels
such as radial basis functions (RBF). With these kernels, the transforma-
tion from a coordinate-like representation into a similarity relation presents
a particular obstacle for assessing the relative contributions of the original
features to the classification (cf. Schölkopf and Smola, 2002). We will there-
fore employ learning machines with linear kernels only (i.e., p = 1). This
allows us to report the relative importance of a hyperplane component wq
in terms of, for instance, its normalized value

fq := wq∑d′

j=1 |wj |
∈ [−1, 1], q = 1 . . . d′, (5.2.12)

such that larger magnitudes correspond to higher discriminative power, and
all magnitudes sum to unity.

Alternatives to the above procedure include the use of a sparse classifier
(see Section 5.5.3, p. 158) or the use of a permutation test (see Section 5.6,
p. 171).

5.3 Application to somatosensory LFPs
The most commonly investigated question in multivariate decoding is to
predict from neuronal activity what type of sensory stimulus was adminis-
tered on a given experimental trial. In order to investigate the applicability
of generative embedding to this class of experiments, we analysed local field
potentials (LFP) acquired from rats in the context of a simple sensory stim-
ulation paradigm.

The electrophysiological recordings under consideration are highly re-
solved in time (here: 1 kHz). This property makes it possible to fit a
neurobiologically inspired network model to individual experimental trials
and hence construct a model-based feature space for classification.
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The dataset considered in this section is based on a somatosensory stim-
ulation paradigm. Using a single-shank electrode with 16 recording sites, we
acquired LFPs from barrel cortex in anaesthetized rats while on each trial
one of two whiskers was stimulated by means of a brief deflection. The goal
was to decode from neuronal activity which particular whisker had been
stimulated on each trial.

5.3.1 Experimental paradigm and data acquisition
Two adjacent whiskers were chosen for stimulation that produced reliable
responses at the site of recording (dataset A1: whiskers E1 and D3; dataset
A2: whiskers C1 and C3; datasets A3 and A4: whiskers D3 and β). On each
trial, one of these whiskers was stimulated by a brief deflection of a piezo
actuator. The experiment comprised 600 trials (Figure 5.4).

Data were acquired from 3 adult male rats. In one of these, an addi-
tional experimental session was carried out after the standard experiment
described above. In this additional session, the actuator was very close to
the whiskers but did not touch it, serving as a control condition to pre-
clude experimental artifacts from driving decoding performance. After the
induction of anaesthesia and surgical preparation, animals were fixated in a
stereotactic frame. A multi-electrode silicon probe with 16 channels was in-
troduced into the barrel cortex. On each trial, voltage traces were recorded
from all 16 sites, approximately spanning all cortical layers (sweep dura-
tion 2 s). Local field potentials were extracted by band-pass filtering the
data (1− 200 Hz). All experimental procedures were approved by the local
veterinary authorities.

5.3.2 Conventional decoding
Before constructing a model-based feature space for classification, we carried
out two conventional decoding analyses. The purpose of the first analysis
was to characterize the temporal specificity with which information could
be extracted from raw recordings, whereas the second served as a baseline
for subsequent model-based decoding.

We characterized the temporal evolution of information in the signal by
training and testing a conventional decoding algorithm on individual time
bins. Specifically, we used a nonlinear `2-norm soft-margin support vector
machine (SVM) with a radial basis kernel to obtain a cross-validated esti-
mate of generalization performance at each peristimulus time point (Chang
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Figure 5.4: Experimental design (LFP dataset 1). The first experiment was based
on a simple whisker-stimulation paradigm. (a) On each trial, after a short prestimulus
period, a brief cosine-wave tactile stimulus was administered to one of two whiskers both
of which had been confirmed to produce reliable responses at the site of recording. Each
trial lasted for 2 s, followed by a jittered inter-trial interval. (b) Stimuli were administered
using piezo actuators. Local field potentials were recorded from barrel cortex using a 16-
channel silicon probe. (c) A conventional decoding analysis, applied to signals from each
channel in turn, revealed a smooth profile of discriminative information across the cortical
sheet. For each electrode, the diagram shows the prediction accuracy obtained when using
a pattern-recognition algorithm to decode the type of whisker that was stimulated on a
given trial.

and Lin, 2011). Since it is multivariate, the algorithm can pool information
across all 16 channels and may therefore yield above-chance performance
even at time points when no channel shows a significant difference between
signal and baseline. This phenomenon was found in two out of three datasets
(see arrows in Figure 5.5). Particularly strong decoding performance was
obtained in dataset A2, in which, at the end of the recording window, 800 ms
after the application of the stimulus, the trial type could still be deciphered
from individual time bins with an accuracy of approx. 70%.

In order to obtain a baseline level for overall classification accuracies,
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Figure 5.5: Temporal evolution of discriminative information (LFP dataset
1). The evolution of discriminative information over time can be visualized by train-
ing and testing a conventional decoding algorithm separately on the data within each
peristimulus time bin. Here, time bins were formed by sampling the data at 200 Hz,
and all 16 channels were included in the feature space. The black curve represents the
balanced accuracy obtained within each time bin (left y-axis). Inset percentages (e.g.,
81% in A1) indicate peak accuracies. Chance levels along with an uncorrected 95% sig-
nificance margin are shown as white horizontal lines. Raw recordings have been added
as a coloured overlay (right y-axis). Each curve represents, for one particular channel,
the difference between the averaged signals from all trials of one class versus the other.
The width of a curve indicates the range of 2 standard errors around the mean difference,
in µV. Separately for each dataset, raw recordings were rescaled to match the range of
classification accuracies, and were plotted on an inverse y-scale, i.e., points above the
midline imply a higher voltage under stimulus A than under stimulus B. Minimum and
maximum voltage differences are given as inset numbers on the left. As expected, since
the significance margins around the chance bar are not corrected for multiple compar-
isons, even the control dataset occasionally achieves above-chance accuracies (as well as
below-chance accuracies). The diagram shows that the classifier systematically performs
well whenever there is a sufficient signal-to-noise ratio. Notably, high accuracies can be
achieved even when no individual channel mean on its own shows a particularly notable
difference from its baseline (arrows).

we examined how accurately a conventional decoding approach could tell
apart the two trial types (see Figure 5.6). The algorithm was based on the
same linear SVM that we would subsequently train and test on model-based
features. Furthermore, both conventional and model-based classification
were supplied with the same single-channel time series (channel 3), sampled
at 1000 Hz over a [−10, 290] ms peristimulus time interval. Thus using
300 data features, we found a highly significant above-chance posterior mean
accuracy of 95.4% (infraliminal probability p < 0.001) at the group level of
experimental data (A1-A3), while no significance was attained in the case
of the control (A4).
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Figure 5.6: Conventional vs. model-based decoding performance (LFP
dataset 1). The diagram shows overall classification accuracies obtained on each
dataset, contrasting conventional decoding (blue) with model-based decoding (green).
Bars represent balanced accuracies along with 95% credible intervals. Consistent in
both conventional (posterior mean at the group level: 95.4%) and model-based decoding
(83.6%), all accuracies are significantly above chance (infraliminal probabilities p < 0.001)
on the experimental datasets (A1–A3). By contrast, neither method attains significance
at the 0.05 level on the control dataset in which no physical stimuli were administered
(A4). Despite a massively reduced feature space, model-based decoding does not per-
form much worse than the conventional approach and retains highly significant predictive
power in all cases.

5.3.3 Generative embedding

We designed a simple DCM and used its parameter space to train and test
a support vector machine (for the full model specification, see Brodersen
et al., 2011b, Supplement S3). Since the data were recorded from a single
cortical region, the model comprised just one region. For trial-by-trial model
inversion we used the recorded signal from electrode channel 3, representing
activity in the supragranular layer.

Using the trial-by-trial estimates of the posterior means of the neuronal
model parameters, we generated a 7-dimensional feature space (for a vi-
sualization, see Figure 5.7). We then trained and tested a linear SVM to
predict, based on this model-based feature space, the type of stimulus for
each trial (Figure 5.6). We found high cross-validated accuracies in all three
experimental datasets (posterior mean accuracy at the group level: 83.6%,
p < 0.001), whereas prediction performance on the control dataset was not
significantly different from chance.

These results show that although the feature space was reduced by two
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Figure 5.7: Generative score space (LFP dataset 1). The three panels show
two-dimensional projections of the (7-dimensional) generative score space in the three
experimental animals A1, A2, and A3. As may be intuited from the scatter plots, clas-
sification performance was strongest in A3 (see Figure 5.6).

orders of magnitude (from 300 to 7 features), model-based decoding still
achieved convincing classification accuracies, all of which were significantly
above chance. We next tested whether the model-based approach would
yield feature weights that were neurobiologically interpretable and plausible.

5.3.4 Reconstruction and interpretation of
discriminative parameters

In order to obtain discriminative feature weights, we trained our linear SVM
on the entire dataset and used Eqn. (5.2.8) to reconstruct the resulting hy-
perplane. Thus, we obtained an estimate of the relative importance of
each DCM parameter in distinguishing the two trial types. These estimates
revealed a similar pattern across all three experiments (Figure 5.8). Specif-
ically, the parameter encoding the onset of sensory inputs to the cortical
population recorded from (R1) was attributed the strongest discriminative
power in all datasets.

Feature weights revealed a strikingly similar pattern across all three
experiments. In particular, as described above, the model parameter rep-
resenting the onset of sensory inputs to the cortical population recorded
from (R1) made the strongest contribution to the classifier’s discriminative
power in all datasets. This finding makes sense because in our experiment
stimulation of the two whiskers induced differential stimulus input to the
single electrode used. For whisker stimulation directly exciting the barrel
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Figure 5.8: Reconstructed feature weights (LFP dataset 1). In order to make
predictions, a discriminative classifier finds a hyperplane that separates examples from
the two types of trial. The components of this hyperplane indicate the joint relative
importance of individual features in the algorithm’s success. The diagram shows the
normalized value of the hyperplane component (x-axis) for the posterior expectation of
each model parameter (y-axis). Feature-weight magnitudes sum to unity, and larger
values indicate higher discriminative power (see main text). Consistent across all three
experiments, the parameter encoding the stimulus onset (R1) was attributed the strongest
discriminative power.

recorded from, a shorter latency can be expected between sensory stimulus
and neuronal response as input is directly received from thalamus. In con-
trast, for stimulation of the other whisker, afferent activity is expected to
be relayed via cortico-cortical connections.

Similarly, a stimulus directly exciting the barrel recorded from, should
be stronger and less dispersed in time than a stimulus coming from a neigh-
bouring whisker. This is reflected by the finding that the parameters rep-
resenting stimulus strength (C) and stimulus dispersion (R2), respectively,
were also assigned noticeable classification weights, although not for all three
datasets. The pattern of informative features was confirmed by the 2D scat-
ter plot (Figure 5.7), in which R1 and R2 play key roles in delineating the
two stimulus classes.

5.4 Application to auditory LFPs
In order to explore the utility of model-based decoding in a second domain,
we made an attempt to decode auditory stimuli from neuronal activity in
behaving animals, using an oddball protocol that underlies a phenomenon
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known as auditory mismatch negativity.
In this paradigm, two tones with different frequencies were repeatedly

played to an awake, behaving rat: a frequent standard tone; and an occa-
sional deviant tone. The goal was to decode from neuronal activity obtained
from two locations in auditory cortex whether a standard tone or a deviant
had been presented on a given trial (Section 5.4).1

5.4.1 Experimental design
The presented sequence consisted of frequent standard tones and occasional
deviant tones of a different frequency (Figure 5.9a). Tone frequencies and
deviant probabilities were varied across experiments. A tone was produced
by bandpass-filtered noise of carrier frequencies between 5 and 18 kHz and a
length of 50 ms (Figure 5.9b). Standard and deviant stimuli were presented
pseudo-randomly with deviant probabilities of 0.1 (datasets B1 and B3)
and 0.2 (dataset B2). The three datasets comprised 900, 500, and 900
trials, respectively.

For the present analyses we used data that was acquired from 3 ani-
mals in a sound-attenuated chamber (cf. Jung et al., 2009). In order to
record event-related responses in the awake, unrestrained animal, a tele-
metric recording system was set up using chronically implanted epidural
silverball electrodes above the left auditory cortex. The electrodes were
connected to an EEG telemetry transmitter that allowed for wireless data
transfer. During the period of data acquisition, rats were awake and placed
in a cage that ensured a reasonably constrained variance in the distance
between the animal and the speakers (see Figure 5.9c). All experimental
procedures were approved by the local governmental and veterinary author-
ities.

A robust finding in analyses of event-related potentials during the audi-
tory oddball paradigm in humans is that deviant tones, compared to stan-
dard ones, lead to a significantly more negative peak between 150–200 ms
post-stimulus, the so-called mismatch negativity (MMN; Näätänen et al.,
2001; Garrido et al., 2009). Although the MMN-literature in rodents is al-
most exclusively concerned with animals under anaesthesia, the observed

1It should be noted that the second dataset was acquired using epidural silverball
electrodes whose recording characteristics differ from those of the intracortical probes
used in the first dataset. For the sake of simplicity, we will refer to both types of data as
local field potentials (LFPs) and model both datasets using the forward model described
in the Methods section.
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Figure 5.9: Experimental design (LFP dataset 2). (a) On each trial, the ani-
mal was presented either with a standard tone or, less frequently, with a deviant of a
different frequency. (b) Each trial lasted for 600 ms, with a stimulus onset 90 ms after
the beginning of a sweep. Recordings comprised 390 ms in total and were followed by
an inter-trial interval of 210 ms. (c) Data were acquired in the awake, behaving animal
using a wireless high-frequency receiver.

difference signals in our data are highly consistent with similar studies in
rats (e.g., von der Behrens et al., 2009), showing a negative deflection at ap-
proximately 30 ms and a later positive deflection at 100 ms (shaded overlay
in Figure 5.10).
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Figure 5.10: Temporal evolution of discriminative information (LFP dataset
2). By analogy with Figure 5.5, the diagram shows the temporal evolution of discrim-
inative information in dataset 2. Time bins were formed by sampling the data from
both channels at 1000 Hz. The black curve represents the balanced accuracy obtained
within each time bin. The coloured overlay shows, separately for both channels, the
mean signal from all deviant trials minus the mean signal from all standard trials. The
diagram shows that the most typical situation in which the trial type can be decoded
with above-chance accuracy is when at least one channel significantly deviates from its
baseline (e.g., grey arrow in B1), though such deviations alone are not always sufficient
to explain multivariate classification accuracies.

5.4.2 Conventional decoding

By analogy with Section 5.3.2, we first ran two conventional decoding analy-
ses. For temporal classification, we used a nonlinear support vector machine
with a radial basis function kernel (Chang and Lin, 2011) and characterized
the temporal evolution of information in the signal by training and testing
the same algorithm on individual time bins. In this initial temporal analy-
sis, above-chance classification reliably coincided with the average difference
between signal and baseline (see Figure 5.10).

In order to obtain baseline performance levels for subsequent model-
based decoding, we ran a conventional trial-wise classification analysis based
on a powerful polynomial kernel over all time points (see Figure 5.11). In
order to ensure a fair comparison, we supplied the algorithm with precisely
the same data as used in the subsequent analysis based on a model-induced
feature space (see below). Specifically, each trial was represented by the
time series of auditory evoked potentials from both electrodes, sampled at
1000 Hz, over a [−10, 310] ms peristimulus time interval (resulting in 320
features). Across the three datasets we obtained an above-chance posterior
mean prediction accuracy of 81.2% at the group level (p < 0.001).
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Figure 5.11: Conventional vs. model-based decoding performance (LFP
dataset 2). The diagram contrasts conventional decoding (blue) with model-based
decoding (green) in terms of overall classification accuracies obtained on each auditory
mismatch dataset. Model-based accuracies tend to be lower than conventional accura-
cies, but they remain significantly above chance in 2 out of 3 cases (59.7% and 54.1%,
p < 0.05 each). All results are given in terms of balanced accuracies (see Section 3.2)
along with 95% credible intervals of the generalization performance.

5.4.3 Generative embedding
In this experiment, data from two electrodes and regions were available,
enabling the construction of a two-region DCM. As the exact locations of
the electrodes in auditory cortex were not known, we initially evaluated
three alternative connectivity layouts between the two regions: (i) a model
with forward connections from region 1 to region 2, backward connections
from region 2 to region 1, and stimulus input arriving in region 1; (ii) a model
with forward connections from region 2 to region 1, backward connections
from region 1 to region 2, and stimulus input arriving in region 2; (iii) a
model with lateral connections between the two regions and stimulus input
arriving in both regions.

For each model, we created a 13-dimensional feature space based on
the posterior expectations of all neuronal and connectivity parameters. We
dealt with the problem of testing multiple hypotheses by splitting the data
from all animals into two halves, using the first half of trials for model
selection and the second half for reporting decoding results.2

Based on the first half of the data within each animal, we found that
2Cross-validation across animals, as opposed to within animals, would not provide a

sensible alternative here since variability in the location of the electrodes precludes the
assumption that all data stem from the same distribution.
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the best discriminability was afforded by the model that assumes forward
connections from region 2 to region 1 and backward connections from region
1 to 2. We then applied this model to the second half of the data, in which
the auditory stimulus administered on each trial could be decoded with
moderate but highly significant accuracies (p < 0.001) in 2 out of 3 datasets
(B1 and B2; see Figure 5.11).

5.4.4 Reconstruction and interpretation of
discriminative parameters

Feature weights are only meaningful to compute when the classifier per-
forms above chance. Thus, separately for datasets B1 and B2, we trained
the same SVM as before on the entire dataset and reconstructed the result-
ing hyperplane; see Eqn. (5.2.8). A similar pattern of weights was again
found across the datasets (see Figure 5.12). In particular, the two model
parameters with the highest joint discriminative power for both datasets
were the parameters representing the strength of the forward and backward
connections, respectively (AF and AB). Noticeable weights were also as-
signed to the extrinsic propagation delay (D1,2) and to the dispersion of the
sigmoidal activation function (S1) (see Figure 5.12).

Very much like in the first dataset (Section 5.3), a similar pattern of
feature weights was again found across the two datasets in which signifi-
cant classification results had been obtained (Figure 5.11). This is not a
trivial prediction, given that all results are based on entirely independent
experiments with inevitable deviations in electrode positions. Neverthe-
less, several model parameters were found with consistent, non-negligible
discriminatory power.

These consistently discriminative parameters included the strength of
the forward and backward connections between the two areas (AF and AB)
and the dispersion of the sigmoidal activation function (S1). Other notice-
able parameters included the synaptic time constants (T1 and T2) and the
extrinsic propagation delays (D).

These findings are in good agreement with previous studies on the mech-
anisms of the MMN (Baldeweg, 2006; Garrido et al., 2008; Kiebel et al.,
2007). In brief, these earlier studies imply that two separate mechanisms,
i.e., predictive coding and adaptation, are likely to contribute to the gener-
ation of the MMN. While the latter mechanism relies on changes in post-
synaptic responsiveness (which can be modelled through changes in the
sigmoidal activation function and/or synaptic time constants), the former
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Figure 5.12: Reconstructed feature weights (LFP dataset 2). By analogy with
Figure 5.8, the diagram shows the normalized hyperplane component magnitudes (x-axis)
for all model parameters (y-axis). Larger values indicate higher discriminative power
when considering the corresponding feature as part of an ensemble of features. One
experiment (B3) was excluded from this analysis since its classification accuracy was not
significantly above chance (see Figure 5.11). The sum of the feature weights of the two
parameters coding for the strength of forward and backward connections (parameters AF

and AB) was highest in both remaining datasets (B1 and B2).

highlights the importance of inter-regional connections for conveying infor-
mation about prediction errors. The results of our model-based classification
are consistent with this dual-mechanism view of the MMN.

5.4.5 Sensitivity analysis
Comparison between generative embedding and conventional ana-
lyses based on DCM. Model-based decoding may serve as an alter-
native to established procedures such as Bayesian model selection (BMS)
in situations where log-evidence-based approaches are not applicable (see
Section 5.6). However, it might also be worth investigating whether model-
based classification offers higher or lower sensitivity than log-evidence-based
approaches in situations where both could be used. Specifically, one could
compare infraliminal p-values obtained from model-based classification to
(equivalents of) p-values derived from Bayes factors in the context of con-
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ventional DCM and BMS. In the DCM analysis, one would model the differ-
ences in class means in terms of changes in specified parameters, and then
compare this model to a null model in which no changes in parameters (and
thus no differences between class means) are allowed. Here, the equivalent
of a p-value can be derived from the posterior model probabilities (i.e., 1
− the conditional probability that the alternate model was better than the
null model).

Such a comparison is feasible but must be qualified carefully since the
two approaches differ in several aspects. BMS-based p-values are the result
of a fitting procedure that uses all available data, while classification oper-
ates on a strongly reduced feature space. Thus, one might generally expect
model-based classification to be less sensitive than evidence-based model
comparison. On the other hand, in the case of current DCM implemen-
tations for evoked responses, only a few parameters are allowed to change
for explaining differences in observed responses (i.e., extrinsic connections
strengths and the amplitude of excitatory postsynaptic potentials), whereas
classification in a model-based feature space may utilize all parameters for
identifying differences between trial types. In addition, a nonlinear classifier
may allow for trial-type separation when no significant difference is revealed
by class means alone. These considerations imply that the relative sensi-
tivity of DCM/BMS vs. model-based classification may vary depending on
the particular data set and model in question.

Indeed, when carrying out the comparison on our two datasets, as de-
scribed below, we obtained mixed results (see Table 5.1). For the first (so-
matosensory) dataset, we found decoding-based p-values to be smaller than
the p-values derived from the log Bayes factor in the conventional DCM ana-
lysis in two out of three cases, and both values were indistinguishable from
zero in one case. In contrast, for the second (mismatch negativity) dataset,
we found that in all three animals DCM-based p-values were smaller than
the p-values provided by our model-based approach.

In summary, the relative sensitivity of DCM/BMS and model-based clas-
sification for establishing differences between trial types (or subject classes)
is difficult to determine in full generality; rather, it likely depends on the
data observed and the particular model used.

Comparison between generative embedding and Hotelling’s T 2-
test. Since generative embedding strongly reduces the dimensionality of
the feature space, one may ask whether two trial types can be discrimi-
nated without invoking a cross-validation scheme and using a conventional
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Animal Bayesian model Model-based Result
comparison (BMS) classification

A1 0.9445 > 0 decoding more sensitive
A2 0.5002 > 0 decoding more sensitive
A3 0 ≈ 0 indistinguishable
A4* 0.2193 < 0.589 decoding more specific
B1 0 < 0.0113 BMS more sensitive
B2 0 < 0.0023 BMS more sensitive
B3 0.5046 < 0.9585 BMS more sensitive

Table 5.1: Comparison of p-values. The table compares infraliminal p-values ob-
tained from model-based classification to (equivalents of) p-values derived from Bayes
factors in the context of conventional DCM and BMS. The asterisk (*) denotes a control
animal in which no discriminability is expected.

Animal Hotelling’s Model-based Result
T 2-test classification

A1 0 ≈ 0 indistinguishable
A2 0 ≈ 0 indistinguishable
A3 0 ≈ 0 indistinguishable
A4* 0.17 < 0.31 decoding more specific
B1 6.8× 10−6 ≈ 3.1× 10−6 indistinguishable
B2 4.5× 10−4 ≈ 1.2× 10−4 indistinguishable
B3 0.001 < 0.18 Hotelling’s more sensitive

Table 5.2: Comparison of p-values. The table compares the significance of above-
chance decoding accuracies to the outcome of Hotelling’s T 2-test, the multivariate gen-
eralization of Student’s t-test. The asterisk (*) denotes a control animal in which no
discriminability is expected.

encoding model instead. Specifically, we compared the significance of above-
chance decoding accuracies to the outcome of Hotelling’s T 2-test, the mul-
tivariate generalization of Student’s t-test. In our context, the null hypo-
thesis states the absence of any difference between class-conditional means
of model parameter estimates.

In the case of decoding, we computed p-values as the probability of ob-
taining the observed balanced accuracy under the null hypothesis that the
classifier operates at chance. In the case of Hotelling’s T 2-test, we com-
puted p-values as the probability of the T 2-statistic being equal or greater
than the observed value under the null hypothesis of the between-condition
Mahalanobis distance being zero (Table 5.2).

Given that our data represent averages and should conform to paramet-
ric assumptions by the central limit theorem, the Neyman-Pearson lemma
states that Hotelling’s T 2-test should provide the most powerful test. How-
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ever, it can only be applied when there are fewer features than examples,
which means that the decoding scheme described in the main text has a
greater domain of application.

For the first dataset, p-values were numerically indistinguishable from
zero in all experimental cases (A1–A3); in the control case where no stimuli
were applied (A4) and where no significant p-value is expected, neither
method yielded a false positive result. For the second dataset, there was
no meaningful difference between decoding-based p-values and Hotelling’s p-
values in two out of three cases, while only Hotelling’s p-value was significant
for the third animal. These anecdotal results are consistent with the notion
that Hotelling’s T 2-test provides the most powerful test when applicable.

5.4.6 Interim conclusions
In the preceding sections, we set out to demonstrate the utility of generative
embedding for local field potentials (LFP). We analysed two independent
datasets: one based on multichannel-electrode recordings from rat barrel
cortex during whisker stimulation under anaesthesia (Section 5.3); and one
based on two-electrode recordings from two locations in auditory cortex of
awake, behaving rats during an auditory oddball paradigm (Section 5.4).

In both datasets, we used a state-of-the-art SVM algorithm in a conven-
tional manner (applying it to approx. 300 ‘raw’ data features, i.e., measured
time points) and compared it to a model-based alternative (which reduced
the feature space by up to two orders of magnitude). Specifically, we de-
signed a model-based feature space using trial-by-trial DCMs; of course,
other modelling approaches could be employed instead. Although gener-
ative embedding did not quite achieve the same accuracy as conventional
methods, the results were significant in all but one instance. Importantly,
it became possible to interpret the resulting feature weights from a neuro-
biological perspective.

Thus, we have provided a proof-of-concept demonstration for the prac-
tical applicability of model-based feature construction. The application do-
main we have chosen here is the trial-by-trial decoding of distinct sensory
stimuli, using evoked potentials recorded from rat cortex. This method
may be useful for guiding the formulation of mechanistic hypotheses that
can be tested by neurophysiological experiments. For example, if a par-
ticular combination of parameters is found to be particularly important
for distinguishing between two cognitive or perceptual states, then future
experiments could test the prediction that selective impairment of the asso-
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ciated mechanisms should maximally impact on the behavioural expression
of those cognitive or perceptual states.

A more important step, from our perspective, however, will be to employ
the same approach to subject-by-subject classification on the basis of human
fMRI data. This particular domain may hold great potential for clinical
applications, as will be examined in the next section.

5.5 Application to fMRI
It has been argued that the construction of biologically plausible and me-
chanistically interpretable models are critical for establishing diagnostic
classification schemes that distinguish between pathophysiologically distinct
subtypes of spectrum diseases, such as schizophrenia (e.g., Stephan et al.,
2009b). The model-based classification approach presented in this thesis
could be an important component of this endeavour, particularly in cases
where conventional BMS cannot be applied for discrimination of clinical
(sub)groups.

5.5.1 Strategies for unbiased model specification and
inversion

For conventional fMRI classification procedures, good-practice guidelines
have been suggested for avoiding an optimistic bias in assessing classifica-
tion performance (O’Toole et al., 2007; Pereira et al., 2009). Generally, to
obtain an unbiased estimate of generalization accuracy, a classifier must be
applied to test data that have not been used during training. In generative
embedding, this principle implies that the specification of the generative
model cannot be treated in isolation from its use for classification. In this
section, we structure different strategies in terms of a decision tree and
evaluate the degree of bias they invoke (see Figure 5.13).

The first distinction is based on whether the regions of interest (ROIs)
underlying the DCM are defined anatomically or functionally.

When ROIs are defined exclusively on the basis of anatomical masks
(Figure 5.13a), the selection of voxels is independent of the functional data.
Using time series from these regions, the model is inverted separately for
each subject. Thus, given n subjects, a single initial model-specification
step is followed by n subject-wise model inversions. The resulting parameter
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Figure 5.13: Strategies for unbiased DCM-based generative embedding. This
figure illustrates how generative embedding can be implemented using dynamic causal
modelling. Depending on whether regions of interest are defined anatomically, based on
across-subjects functional contrasts, or based on between-group contrasts, there are sev-
eral possible practical procedures. Some of these procedures may lead to biased estimates
of classification accuracy (grey boxes). Procedures a, c, and f avoid this bias, and are
therefore recommended (green boxes). The analysis of the illustrative dataset described
in this chapter follows procedure c.

estimates can be safely submitted to a cross-validation procedure to obtain
an unbiased estimate of classification performance.

Whenever functional contrasts have played a role in defining ROIs, sub-
sequent classification may no longer be unbiased, since a functional contrast
introduces statistics of the data into voxel selection. In this case, we ask
whether contrasts are defined in an across-subjects or a between-groups fash-
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ion.
In the case of an across-subjects contrast (which does not take into ac-

count group membership), one might be tempted to follow the same logic as
in the case of anatomical ROI definitions: a single across-subjects contrast,
computed for all subjects, guides the selection of voxels, and the resulting
DCM is inverted separately for each subject (Figure 5.13b). Unfortunately,
this procedure is problematic. When using the resulting parameter esti-
mates in a leave-one-out cross-validation scheme, in every repetition the
features would be based on a model with regions determined by a group
contrast that was based on the data from all subjects, including the left-out
test subject. This means that training the classifier would no longer be
independent of the test data, which violates the independence assumption
underlying cross-validation, a situation referred to as peeking (Pereira et al.,
2009). In consequence, the resulting generalization estimate may exhibit an
optimistic bias.

To avoid this bias, model specification must be integrated into cross-
validation (Figure 5.13c). Specifically, in each fold, we leave out one subject
as a test subject and compute an across-subjects group contrast from the
remaining n − 1 subjects. The resulting choice of voxels is then used for
specifying time series in each subject and the resulting model is inverted
separately for each subject, including the left-out test subject. This pro-
cedure is repeated n times, each time leaving out a different subject. In
total, the model will be inverted n2 times. In this way, within each cross-
validation fold, the selection of voxels is exclusively based on the training
data, and no peeking is involved. This strategy is adopted for the dataset
analysed in this section, as detailed in Section 5.5.3.

When functional contrasts are not defined across all subjects but be-
tween groups, the effect of peeking may become particularly severe. Using
a between-groups contrast to define regions of interest on the basis of all
available data, and using these regions to invert the model for each subject
(Figure 5.13d) would introduce information about group membership into
the process of voxel selection. Thus, feature selection for both training and
test data would be influenced by both the data and the label of the left-out
test subject.

One way of decreasing the resulting bias is to integrate model specifi-
cation into cross-validation (Figure 5.13e). In this procedure, the between-
groups contrast is computed separately for each training set (i.e., based
on n − 1 subjects), and the resulting regions are used to invert the model
for the test subject. Consequently, the class label of the test subject is no
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longer involved in selecting features for the test subject. However, the test
label continues to influence the features of the training set, since these are
based on contrasts defined for a group that included the test subject.This
bias can only be removed by adopting the same laborious procedure as with
across-subjects contrasts: by using a between-groups contrast involving n−1
subjects, inverting the resulting model separately for each subject, and re-
peating this procedure n times (Figure 5.13f). This procedure guarantees
that neither the training procedure nor the features selected for the test
subject were influenced by the data or the label of the test subject.

In summary, the above analysis shows that there are three practical
strategies for the implementation of generative embedding that yield an
unbiased cross-validated accuracy estimate. If regions are defined anatom-
ically, the model is inverted separately for each subject, and the resulting
parameter estimates can be safely used in cross-validation (Figure 5.13a).
Otherwise, if regions are defined by a functional contrast, both the defini-
tion of ROIs and model inversion for all subjects need to be carried out
separately for each cross-validation fold (Figure 5.13c,f).

5.5.2 Experimental design, data acquisition,
and preprocessing

In order to illustrate the utility of generative embedding for fMRI, we used
data from two groups of participants (patients with moderate aphasia vs.
healthy controls) engaged in a simple speech-processing task. The conven-
tional SPM and DCM analyses of these data are published elsewhere; we
refer to Leff et al. (2008) and Schofield et al. (2012) for detailed descriptions
of all experimental procedures.

The two groups of subjects consisted of 26 right-handed healthy parti-
cipants with normal hearing, English as their first language, and no history
of neurological disease (12 female; mean age 54.1 years; range 26–72 years);
and 11 patients diagnosed with moderate aphasia due to stroke (1 female;
mean age 66.1; range 45–90 years). The patients’ aphasia profile was char-
acterized using the Comprehensive Aphasia Test (Swinburn et al., 2004). As
a group, they had scores in the aphasic range for: spoken and written word
comprehension (single word and sentence level); single word repetition; and
object naming. It is important to emphasize that the lesions did not affect
any of the temporal regions which we included in our model described below
(see Schofield et al., 2012, for detailed information on lesion localization).

Subjects were presented with two types of auditory stimulus: (i) normal
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Figure 5.14: Detecting a remote lesion. To illustrate generative embedding for
fMRI, we aimed to distinguish between stroke patients and healthy controls, based on
non-lesioned regions involved in speech processing. In other words, we asked whether the
downstream consequences of a remote lesion on a network of healthy brain regions could
be picked up by a model-based classifier.

speech; and (ii) time-reversed speech, which is unintelligible but retains both
speaker identity and the spectral complexity of normal speech. Subjects
were given an incidental task, to make a gender judgment on each auditory
stimulus, which they indicated with a button press.

Functional T2*-weighted echo-planar images (EPI) with BOLD contrast
were acquired using a Siemens Sonata 1.5 T scanner (in-plane resolution
3 mm × 3 mm; slice thickness 2 mm; inter-slice gap 1 mm; TR 3.15 s).
In total, 122 volumes were recorded in each of 4 consecutive sessions. In
addition, a T1-weighted anatomical image was acquired. Following realign-
ment and unwarping of the functional images, the mean functional image of
each subject was coregistered to its high-resolution structural image. This
image was spatially normalized to standard Montreal Neurological Insti-
tute (MNI152) space, and the resulting deformation field was applied to the
functional data. These data were then spatially smoothed using an isotropic
Gaussian kernel (FWHM 8 mm). In previous work, these data have been
analysed using a conventional general linear model (GLM; Friston et al.,
1995) and (DCM; Friston et al., 2003); the results are described in Schofield
et al. (2012). Here, we re-examined the dataset using the procedure shown
in Figure 5.13c, as described in detail in the next subsection.
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5.5.3 Implementation of generative embedding
First-level analysis. The first level of our statistical analysis employed
a mass-univariate analysis in each subject. Each auditory stimulus was
modelled as a separate delta function, and the resulting trains of auditory
events were convolved with a canonical haemodynamic response function.
The first regressor in the design matrix contained all auditory events (i.e.,
normal and time-reversed speech stimuli); the second regressor modelled in-
telligibility (normal vs. time-reversed speech) as a parametric modulation.
Beta coefficients were estimated for all voxels using a GLM. To identify
regions responding to auditory stimulation per se, we used an ‘all auditory
events’ contrast based on the first regressor (i.e., a contrast between audi-
tory stimuli and background scanner noise), designed to find early auditory
regions required for the perception of any broad-band stimulus, whether it
is speech or speech-like.

Second-level (group) analysis. The second-level analysis served to se-
lect regions whose voxels entered the subject-specific DCMs (in terms of
the first eigenvariate of their time series). In the previous study of these
data (Schofield et al., 2012), a set of 512 alternative DCMs had been com-
pared that embodied competing hypotheses about the architecture of the
thalamo-temporal network processing speech-like stimuli per se. Here, we
focused on the model which was found to have the highest evidence in this
previous study, i.e., the model providing the best trade-off between accu-
racy and complexity in explaining the data (Raftery, 1995; Stephan et al.,
2007a, 2009a). Note that this selection procedure is ignorant of subject la-
bels, which prevents test labels from influencing the training procedure.3 In
addition, the selection of time series remains independent of the test data.

The DCM we used contains 6 regions (medial geniculate body, MGB;
Heschl’s gyrus, HG; planum temporale, PT), three in each hemisphere, and
14 interregional connections (see Figure 5.16). Note that this model con-
cerned processing of acoustic stimuli with speech-like spectral properties per
se, not differentiating between normal and time-reversed speech; therefore,
it did not contain modulatory inputs (corresponding to all-zero B(j) ma-
trices in Eqn. (2.4.2) on p. 40). Critically, instead of identifying regions
functionally by a group contrast, we pre-defined large anatomical masks

3An alternative, computationally more expensive approach would be to select the
model that affords the best classification accuracy, and integrate this selection step into
an overall cross-validation scheme, as we did in Sections 5.3 and 5.4.
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Figure 5.15: Regions of interest and searchlight classification result. (1) In
order to illustrate generative embedding for fMRI, a DCM was constructed on the basis of
6 anatomical regions of interest. As described in the main text, the exact location of these
regions was determined on the basis of an n− 1 group contrast and hence was allowed to
vary between cross-validation folds. Regions were defined by 16 mm × 16 mm × 16 mm
cubes centred on the group maxima (see Table 5.3). The figure shows the location
and extent of the anatomical masks (green) that were used to define fold-specific DCM
regions. (2) A conventional searchlight analysis (Kriegeskorte et al., 2006) was carried
out to illustrate the degree to which a given voxel and its local spherical environment
(radius 4 mm) allowed for a separation between aphasic patients and healthy controls.
The map is thresholded at p = 0.05, uncorrected, and illustrates which regions were most
informative.

L.MGB left medial geniculate body −23 mm, −23 mm, −1 mm
L.HG left Heschl’s gyrus (A1) −47 mm, −26 mm, 7 mm
L.PT left planum temporale −64 mm, −23 mm, 8 mm
R.MGB right medial geniculate body 22 mm, −21 mm, −1 mm
R.HG right Heschl’s gyrus (A1) 48 mm, −24 mm, 6 mm
R.PT right planum temporale 65 mm, −22 mm, 3 mm

Table 5.3: Regions of interest. Speech processing was modelled using a DCM with 6
regions. The table lists these regions in terms of MNI152 coordinates defining the centre
of the rough anatomical masks (16 mm × 16 mm × 16 mm) that guided the specification
of the exact location and extent of the regions of interest underlying model inversion.
For an illustration of these masks, see Figure 5.15.

(16 mm × 16 mm × 16 mm) that specified only the rough location of the
6 regions of interest (see Table 5.3). These masks served to guide the se-
lection of time series, using a leave-one-out approach to feature selection as
described below.
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Figure 5.16: Dynamic causal model of speech processing. The diagram illustrates
the specific dynamic causal model (DCM) that was used for the illustrative application
of generative embedding in this study. It consists of 6 regions (circles), 15 interregional
connections (arrows between regions), 6 self-connections (circular arrows), and 2 stimulus
inputs (straight arrows at the bottom). The specific set of connections shown here is the
result of Bayesian model selection that was carried out on the basis of a large set of
competing connectivity layouts (for details, see Schofield et al., 2012).

Model specification. To specify the exact location and extent of our 6
regions of interest, and thus the exact time series that would be modelled by
the DCM, we used a leave-one-out approach to feature selection. For this
purpose, we carried out n separate second-level analyses, each time leaving
out one subject, and then used a conventional summary-statistics approach
(Friston et al., 2005) across the remaining n− 1 subjects to find voxels that
survived a one-sample ‘all auditory events’ t-test with a statistical threshold
of p = 0.001, uncorrected, across all subjects, within the anatomical masks
described above. Note that this contrast is agnostic about diagnostic status
(corresponding to Figure 5.13c).4 Within each leave-one-out repetition, our
procedure yielded 6 voxel sets, one for each region of interest. We used the
first eigenvariate over voxels as a representative time series for each region
in DCM.

4With the cross-validation scheme used here, a between-group contrast could have
been used as well without risking bias; see Section 5.5.1. This case would correspond to
Figure 5.13f.
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Model inversion. Inversion of the DCM was carried out independently
for each subject, and separately for each cross-validation fold (i.e., each
group contrast). With regions (and thus modelled time series) differing
each time depending on the current set of n − 1 subjects, this procedure
resulted in a total of n2 = 1 369 fitted DCMs.

Characterization of the feature space. The low dimensionality of the
model-based feature space makes it possible to visualize subjects in a radial
coordinate system, where each axis corresponds to a particular model pa-
rameter (see Figure 5.17). When using parameters that represent directed
connection strengths, this form of visualization is reminiscent of the notion
of ‘connectional fingerprints’ for characterizing individual cortical regions
(Passingham et al., 2002). In our case, there is no immediately obvious
visual difference in fingerprints between aphasic patients and healthy con-
trols. On the contrary, the plot gives an impression of the large variability
across subjects and suggests that differences might be subtle and possibly
jointly encoded in multiple parameters.

One way of characterizing the discriminative information encoded in
individual model parameters more directly is to estimate class-conditional
univariate feature densities (see Figure 5.18). Here, densities were estimated
in a nonparametric way using a Gaussian kernel with an automatically se-
lected bandwidth, making no assumptions about the distributions other
than smoothness (Scott, 1992). While most densities are heavily overlap-
ping, a two-sample t-test revealed significant group differences in four model
parameters (denoted by stars in Figure 5.18): the self-connection of L.HG
(parameter 4); the influence that L.HG exerts over L.PT (parameter 5); the
influence R.MGB on R.PT (parameter 13); and the influence of R.HG on
L.HG (parameter 14). All of these were significant at the 0.001 level while
no other parameter survived p = 0.05.

Kernel construction. A generative score space was constructed on the
basis of the posterior mean estimates of the neuronal model parameters
(θn in (2.4.2) on p. 40). The resulting space contained 22 features: 20
interregional connection strengths (A matrix), no modulatory parameters
(as the B matrix was empty in the DCM we used), and 2 input parameters
(C vector). All feature vectors were normalized to unit length. To minimize
the risk of overfitting and enable a clear interpretation of feature weights,
we used a linear kernel. Consequently, the similarity between two subjects
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patients 

controls 

Figure 5.17: Connectional fingerprints. Given the low dimensionality of the model-
induced feature space, subjects can be visualized in terms of ‘connectional fingerprints’
(Passingham et al., 2002) that are based on a simple radial coordinate system in which
each axis corresponds to the posterior mean estimate of a particular model parameter.
The plot shows that the difference between aphasic patients (red) and healthy controls
(grey) is not immediately obvious, suggesting that it might be subtle and potentially of
a distributed nature.

was defined as the inner product between the normalized vectors of the
posterior means of their model parameters.

Classification. An `2-norm soft-margin linear support vector machine
(SVM) was trained and tested using leave-one-out cross-validation. Specifi-
cally, in each fold j, the classifier was trained on all subjects except j, on the
basis of the DCM parameter estimates obtained from fitting the voxel time
series selected by the group analysis based on all subjects except j. The
classifier was then tested by applying it to DCM parameter estimates for the
time series from subject j (using the same voxels as the rest of the group).
Crucially, in this way, test data and test labels were neither used for model
specification nor for classifier training, preventing optimistic estimates of
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Figure 5.18: Univariate feature densities. Separately for patients and healthy
controls, the figure shows nonparametric estimates of the class-conditional densities of
the posterior mean estimates of model parameters. The estimates themselves are shown as
a rug along the x-axis. The results of individual liberal two-sample t-tests, thresholded at
p = 0.05, uncorrected for multiple testing, are indicated in the title of each panel. Three
stars (***) correspond to p < 0.001, indicating that the associated model parameter
assumes very different values for patients and controls.

classification performance (Figure 5.19).

Jointly discriminative features. The `2-norm SVM is a natural choice
when the goal is maximal prediction accuracy. However, it usually leads to
a dense solution (as opposed to a sparse solution) in which almost all fea-
tures are used for classification. This dense estimation result is suboptimal
when one wishes to understand which model parameters contribute most
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Figure 5.19: Practical implementation of generative embedding for fMRI.
This figure summarizes the three steps involved in model-based classification for fMRI,
designed to integrate the inversion of a generative model into cross-validation. In step 1,
within a given repetition j = 1, . . . , n, the model is specified using all subjects except j.
This yields a set of time series {xi ∈ X} for each subject i = 1, . . . , n. In step 2, the model
is inverted independently for each subject, giving rise to a set of subject-specific posterior
parameter means {µ̂i}. In step 3, these parameter estimates are used to train a classifier
on all subjects except j and test it on subject j, which yields a prediction about the class
label of subject j. After having repeated these three steps for all j = 1, . . . , n, the set
of predicted labels can be compared with the true labels, which allows us to estimate
the algorithm’s generalization performance (Chapters 3 and 4). In addition, parameters
that proved jointly discriminative can be interpreted in the context of the underlying
generative model. The sequence of steps shown here corresponds to the procedure shown
in Figures 5.13c and 5.13f.

to distinguishing groups, which will be the focus in Section 5.5.6 where
we will interpret jointly discriminative features in the context of the un-
derlying model. In this case, an SVM that enforces feature sparsity may
be more useful. One simple way of inducing sparsity is to penalize the
number of non-zero coefficients by using an `0-regularizer. Unlike other
regularizers, the `0-norm (also known as the counting norm) reduces the
feature-selection bias inherent in unbounded regularizers such as the `1- or
`2-norm. The computational cost of optimizing an `0-SVM objective func-
tion is prohibitive, because the number of subsets of d items which are of
size k is exponential in k. We therefore replace the `0-norm by a capped
`1-regularizer which has very similar properties (Zhang, 2009). One way of
solving the resulting optimization problem is to use a bilinear programming
approach (Peleg and Meir, 2008). Here, we use a more efficient difference-
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of-convex-functions algorithm (Ong and An, 2012).
In summary, we will use two types of SVM. For the purpose of classifi-

cation, we aim to maximize the potential for highly accurate predictions by
using an `2-norm SVM. For the purpose of feature selection and interpre-
tation, we will focus on feature sparsity by using an approximation to an
`0-norm SVM, which will highlight those DCM parameters jointly deemed
most informative in distinguishing between groups.

5.5.4 Comparative analyses
We compared the performance of generative embedding to a range of al-
ternative approaches. To begin with, we examined several conventional
activation-based classification schemes. The first method was based on a
feature space composed of all voxels within the predefined anatomical masks
used for guiding the specification of the DCMs. As above, we used a linear
SVM, and all training sets were balanced by oversampling. We will refer to
this approach as anatomical feature selection.

The second method, in contrast to the first one, was not only based on
the same classifier as in generative embedding but also used exactly the
same voxels. Specifically, voxels were selected on the basis of the same ‘all
auditory events’ contrast as above, which is a common approach to defining
a voxel-based feature space in subject-by-subject classification (Ford et al.,
2003; Fan et al., 2007; Pereira et al., 2009). In every cross-validation fold,
only those voxels entered the classifier that survived a t-test (p = 0.001,
uncorrected) in the current set of n−1 subjects. Training sets were balanced
by oversampling. We will refer to this method as contrast feature selection.

The third activation-based method used a locally multivariate ‘search-
light’ strategy for feature selection. Specifically, in each cross-validation
fold, a sphere (radius 4 mm) was passed across all voxels contained in the
anatomical masks described above (Kriegeskorte et al., 2006). Using the
training set only, a nested leave-one-out cross-validation scheme was used
to estimate the generalization performance of each sphere using a linear
SVM with a fixed regularization hyperparameter (C = 1). Next, all spheres
with an accuracy greater than 75% were used to form the feature space for
the current outer cross-validation fold, which corresponds to selecting all
voxels whose local neighbourhoods allowed for a significant discrimination
between patients and healthy controls at p = 0.01. Both outer and inner
training sets were balanced by oversampling. We will refer to this method
as searchlight feature selection. To illustrate the location of the most infor-
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mative voxels, we carried out an additional searchlight analysis, based on
the entire dataset as opposed to a subset of size n− 1, and used the results
to generate a discriminative map (Figure 5.15).

The fourth conventional method was based on a principal component
analysis (PCA) to reduce the dimensionality of the feature space constructed
from all voxels in the anatomical masks described above. Unlike generative
embedding, PCA-based dimensionality reduction finds a linear manifold in
the data without a mechanistic view of how those data might have been gen-
erated. We sorted all principal components in decreasing order of explained
variance. By retaining the 22 top components, the resulting dimensionality
matched the dimensionality of the feature space used in generative embed-
ding.

In addition to the above activation-based methods, we compared gen-
erative embedding to several approaches based on undirected regional cor-
relations. We began by averaging the activity within each region of inter-
est to obtain region-specific representative time series. We then computed
pairwise correlation coefficients to obtain a 15-dimensional feature space
of functional connectivity. Next, instead of computing spatial averages, we
summarized the activity within each region in terms of the first eigenvariate.
Thus, in this approach, the exact same data was used to estimate functional
connectivity as was used by DCM to infer effective connectivity. Finally, as
suggested in (Craddock et al., 2009), we created yet another feature space
by transforming the correlation coefficients on eigenvariates into z-scores
using the Fisher transformation (Fisher, 1915).

In addition to conventional activation- and correlation-based approaches,
we also investigated the dependence of generative embedding on the struc-
ture of the underlying model. Specifically, we repeated our original analysis
on the basis of three alternative models. For the first model, we constructed
a feedforward system by depriving the original model of all feedback and
interhemispheric connections (Figure 5.20a); while this model could still, in
principle, explain neuronal dynamics throughout the system of interest, it
was neurobiologically less plausible. For the second and third model, we
kept all connections from the original model but modelled either only the
left hemisphere (Figure 5.20b) or only the right hemisphere (Figure 5.20c).

In summary, we compared the primary approach proposed in this sec-
tion to 4 conventional activation-based methods, 3 conventional correlation-
based methods, and 3 generative-embedding analyses using models which,
in comparison to the original models, were reduced and biologically less
plausible.
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Figure 5.20: Biologically less plausible models. To illustrate the specificity of
generative embedding, the analysis described in the main text was repeated on the basis of
three biologically less plausible models. In contrast to the full model shown in Figure 5.16,
these alternative models either (a) contained no feedback or interhemispheric connections,
(b) accounted for activity in the left hemisphere only, or (c) focussed exclusively on the
right hemisphere. For results, see Figures 5.21 and 5.22.

5.5.5 Classification performance
The classification performance of generative embedding was evaluated us-
ing the procedure described in Figures 5.13c and 5.19. This procedure was
compared to several conventional activation-based and correlation-based ap-
proaches. As an additional control, generative embedding was carried out
on the basis of three biologically ill-informed models. In all cases, a leave-
one-subject-out cross-validation scheme was used to obtain the posterior
distribution of the balanced accuracy as well as smooth estimates of the un-
derlying receiver-operating characteristic (ROC) and precision-recall (PR)
curves (Brodersen et al., 2010b). Results are presented in Figures 5.21
and 5.22.

The strongest classification performance was obtained when using gen-
erative embedding with the full model shown in Figure 5.16. The approach
correctly associated 36 out of 37 subjects with their true disease state, cor-
responding to a balanced accuracy of 98%.

Regarding conventional activation-based methods, classification based
on anatomical feature selection did not perform significantly above chance
(balanced accuracy 62%, p ≈ 0.089). Contrast feature selection (75%,
p ≈ 0.003), searchlight feature selection (73%, p ≈ 0.006), and PCA-based
dimensionality reduction (80%, p < 0.001) did perform significantly above
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chance; however, all methods were outperformed significantly by generative
embedding (p ≈ 0.003, p ≈ 0.001, and p ≈ 0.045, paired-sample Wald test).
Regarding conventional correlation-based methods, all three approaches
performed above chance, whether based on correlations amongst the means
(70%, p ≈ 0.011), correlations amongst eigenvariates (83%, p < 0.001), or
z-transformed correlations amongst eigenvariates (74%, p ≈ 0.002). Criti-
cally, however, all were significantly outperformed by generative embedding
(p < 0.001, p ≈ 0.045, p ≈ 0.006).

Regarding generative embedding itself, when replacing the original model
shown in Figure 5.16 by a biologically less plausible feedforward model
(Figure 5.20a) or by a model that captured the left hemisphere only (Fig-
ure 5.20b), we observed a significant decrease in performance, from 98%
down to 77% (p ≈ 0.002) and 81% (p ≈ 0.008), respectively, although both
accuracies remained significantly above chance (p ≈ 0.001 and p < 0.001).
By contrast, when modelling the right hemisphere only (Figure 5.20c), per-
formance dropped to a level indistinguishable from chance (59.3%, p ≈
0.134).

5.5.6 Reconstruction and interpretation of
discriminative parameters

In order to provide a better intuition as to how the generative model shown
in Figure 5.16 created a score space in which examples were much better
separated than in the original voxel-based feature space, we produced two
scatter plots of the data (Figure 5.23). The first plot is based on the peak
voxels of the three most discriminative clusters among all regions of inter-
est, evaluated by a searchlight classification analysis. The second plot, by
analogy, is based on the three most discriminative model parameters, as
measured by two-sample t-tests in the (normalized) generative score space.
This illustration shows how the voxel-based projection (left) leads to classes
that still overlap considerably, whereas the model-based projection (right)
provides an almost perfectly linear separation of patients and controls.

To understand which DCM parameters jointly enabled the distinction
between patients and controls, we examined the frequency with which fea-
tures were selected in leave-one-out cross-validation when using an SVM
with a sparsity-inducing regularizer (Peleg and Meir, 2008; Zhang, 2009).

We found that the classifier favoured a highly consistent and sparse set
of 9 (out of 22) model parameters (see Figure 5.25); the corresponding
synaptic connections are highlighted in red in Figure 5.26. Notably, this
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Figure 5.21: Classification performance I. Classification based on generative em-
bedding using the model shown in Figure 5.16 was compared to ten alternative meth-
ods: anatomical feature selection, contrast feature selection, searchlight feature selection,
PCA-based dimensionality reduction, regional correlations based on region means, re-
gional correlations based on eigenvariates, regional z-transformed correlations based on
eigenvariates, as well as generative embedding using three biologically unlikely alterna-
tive models. The balanced accuracy and its central 95% posterior probability interval
show that all methods performed significantly better than chance (50%) with the excep-
tion of classification with anatomical feature selection and generative embedding using
a nonsensical model. Differences between activation-based methods (light grey) and
correlation-based methods (dark grey) were largely statistically indistinguishable. By
contrast, using the full model shown in Figure 5.16, generative embedding (blue) signifi-
cantly outperformed all other methods, except when used with biologically less plausible
models (Figure 5.20).

9-dimensional feature space, when used with the original `2-norm SVM,
yielded the same balanced classification accuracy (98%) as the full 22-
dimensional feature space, despite discarding more than two thirds of its
dimensions.

The above representation disclosed interesting potential mechanisms.
For example, discriminative parameters were restricted to cortico-cortical
and thalamo-cortical connection strengths, whereas parameters representing
auditory inputs to thalamic nuclei did not contribute to the distinction
between patients and healthy controls.

This finding implies that, as one would expect, low-level processing of
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Figure 5.22: Classification performance II. (a) Receiver-operating characteristic
(ROC) curves of the eleven methods illustrate the trade-off between true positive rate
(sensitivity) and false positive rate (1 − specificity) across the entire range of detection
thresholds. (b) Precision-recall (PR) curves illustrate the trade-off between positive pre-
diction value (precision) and true positive rate (recall). As with ROC curves, a larger
area under the curve is better. Smooth ROC and PR curves were obtained using a bi-
normal assumption on the underlying decision values (see Brodersen et al., 2010b, for
details).

auditory stimuli, from brain stem to thalamus, is unimpaired in aphasia and
that processing deficiencies are restricted to thalamo-cortical and cortico-
cortical networks. Discriminative connections included, in particular, the
top-down connections from planum temporale to Heschl’s gyrus bilaterally;
the importance of these connections had also been highlighted by the pre-
vious univariate analyses of group-wise DCM parameters in the study by
Schofield et al. (2012).

Furthermore, all of the connections from the right to the left hemisphere
were informative for group membership, but none of the connections in the
reverse direction. This pattern is interesting given the known specializa-
tion of the left hemisphere in language and speech processing and previous
findings that language-relevant information is transferred from the right
hemisphere to the left, but not vice versa (Stephan et al., 2007c). It implies
that aphasia leads to specific changes in connectivity, even in non-lesioned
parts of the language network, with a particular effect on inter-hemispheric
transfer of speech information.

This specificity is seen even more clearly when considering only those
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Figure 5.23: Induction of a generative score space. This figure provides an
intuition of how a generative model transforms the data from a voxel-based feature space
into a generative score space (or model-based feature space), in which classes become
more separable. The left plot shows how aphasic patients (red) and healthy controls
(grey) are represented in voxel space, based on t-scores from a simple ‘all auditory events’
contrast (see main text). The three axes represent the peaks of those three clusters that
showed the strongest discriminability between patients and controls, based on a locally
multivariate searchlight classification analysis. They are located in L.PT, L.HG, and
R.PT, respectively (cf. Table 5.3). The right plot shows the three individually most
discriminative parameters (two-sample t-test) in the (normalized) generative score space
induced by a dynamic causal model of speech processing. The plot illustrates how aphasic
patients and healthy controls become almost perfectly linearly separable in the new space.
Note that this figure is based on normalized examples (as used by the classifier), which
means the marginal densities are not the same as those shown in Figure 5.18 but are
exactly those seen by the classifier.

three parameters which were selected 100% of the time (i.e., in all cross-
validation folds) and are thus particularly meaningful for classification (bold
red arrows in Figure 5.25). The associated connections mediate informa-
tion transfer from the right to the left hemisphere and converge on the left
planum temporale which is a critical structure for processing of language
and speech (Price, 2010; Dehaene et al., 2010).

In summary, all selected features represented connectivity parameters
(as opposed to stimulus input); their selection was both sparse and highly
consistent across resampling repetitions; and their combination was suffi-
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Figure 5.24: Stereogram of the generative score space. Based on the generative
score space illustrated in Figure 5.23b, we here show the same plot from two slightly
different angles. Readers are invited to try and focus an imaginary point behind the two
plots, or use a stereoscope, to recover a fully three-dimensional impression.

cient to afford the same classification accuracy as the full feature set.

5.6 Discussion
Recent years have seen a substantial increase in research that investigates
the neurophysiological encoding problem from an inverse perspective, asking
how well we can decode a cognitive or clinical state from neuronal activity.
Here, we have proposed a new classification approach based on generative
embedding. This approach involves (i) trial-wise or subject-wise inversion
of a biophysically interpretable model of neural responses, (ii) classification
in parameter space, and (iii) interpretation of the ensuing feature weights.

Summary of findings. While our results on electrophysiological record-
ings (Sections 5.3 and 5.4) provide an initial proof of concept, the primary
focus of this chapter is on our analysis of fMRI data, which provided two
novel results. First, we found strong evidence in favour of the hypothe-
sis that aphasic patients and healthy controls may be distinguished on the
basis of differences in the parameters of a generative model alone. Gen-
erative embedding did not only yield a near-perfect balanced classification
accuracy (98%). It also significantly outperformed conventional activation-
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Figure 5.25: Discriminative features. A support vector machine with a sparsity-
inducing regularizer (capped `1-regularizer) was trained and tested in a leave-one-out
cross-validation scheme, resulting in n subsets of selected features. The figure summarizes
these subsets by visualizing how often each feature (printed along the y-axis) was selected
across the n repetitions (given as a fraction on the x-axis). Error bars represent central
95% posterior probability intervals of a Beta distribution with a flat prior over the interval
[0, 1] (cf. Section 3.2). A group of 9 features was consistently found jointly informative
for discriminating between aphasic patients and healthy controls. Crucially, since each
feature corresponds to a model parameter that describes one particular interregional
connection strength, the group of informative features can be directly related back to the
underlying dynamic causal model (see highlighted connections in Figure 5.16).

based methods, whether they were based on anatomical (62%), contrast
(75%), searchlight feature selection (73%), or on a PCA-based dimension-
ality reduction (80%).

Similarly, our approach outperformed methods that used correlations
as features, whether they were based on regional means (70%) or regional
eigenvariates (74%–83%). Furthermore, it is interesting to observe that
group separability was reduced considerably when using a less plausible
feedforward model (77%). Finally, performance decreased significantly when
modelling only the left hemisphere (81%), and it dropped to chance when
considering the right hemisphere by itself (60%), which is precisely what
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Figure 5.26: Interpretation of jointly discriminative features. A sparse set of
9 out of 23 connectivity and input parameters (see Figure 5.25) was found to be suf-
ficiently informative to distinguish between aphasic patients and healthy controls with
near-perfect accuracy (see Figure 5.21). The connections corresponding to these 9 param-
eters are highlighted in red. Only three parameters were selected in all cross-validation
folds and are thus particularly meaningful for classification (bold red arrows); these re-
fer to connections mediating information transfer from the right to the left hemisphere,
converging on left PT, which is a key structure in speech processing.

one would expect under the view that the left hemisphere is predominantly,
but not exclusively, implicated in language processing.

Taken together, our findings provide strong support for the central idea
of this thesis—that critical differences between groups of subjects may be
expressed in a highly nonlinear manifold which remains inaccessible by
methods relying on activations or undirected correlations, but which can
be unlocked by the nonlinear transformation embodied by an appropriate
generative model.

The second result that we obtained from our analysis concerned inter-
pretability. Since features correspond to model parameters, our approach
allowed us to characterize a subset of features (Figure 5.25) that can be in-
terpreted in the context of the underlying model (Figure 5.16). This subset
showed four remarkable properties.

• Discriminative parameters were restricted to cortico-cortical and tha-
lamo-cortical connection strengths. On the contrary, parameters rep-
resenting auditory inputs to thalamic nuclei did not contribute to the
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distinction between patients and healthy controls.

• We observed a high degree of stability across resampling folds. That
is, the same 9 (out of 22) features were selected on almost every rep-
etition.

• The set of discriminative parameters was found to be sparse, not just
within repetitions (which is enforced by the underlying regularizer)
but also across repetitions (which is not enforced by the regularizer).
At the same time, the set was considerably larger than what would
be expected from univariate feature-wise t-tests (Figure 5.18).

• The sparse set of discriminative parameters proved sufficient to yield
the same balanced classification accuracy (98%) as the full set.

These results are consistent with the notion that a distinct mechanism,
and thus few parameters, are sufficient to explain differences in process-
ing of speech and speech-like sounds between aphasic patients and healthy
controls. In particular, all of the connections from the right to the left hemi-
sphere were informative with regard to group membership, but none of the
connections in the reverse direction.

This asymmetry resonates with previous findings that language-relevant
information is transferred from the right hemisphere to the left, but not
vice versa (Stephan et al., 2007c), and suggests that in aphasia connectivity
changes in non-lesioned parts of the language network have particularly
pronounced effects on inter-hemispheric transfer of speech information from
the (non-dominant) right hemisphere to the (dominant) left hemisphere.

It is worthwhile briefly commenting on how the present findings relate
to those of the original DCM study by Schofield et al. (2012). Two crucial
differences are that the previous study (i) applied Bayesian model averaging
to a set of 512 models and (ii) statistically examined each of the resulting
average connection strengths in a univariate fashion. They found group
differences for most connections, highlighting in particular the top-down
connections from planum temporale to primary auditory cortex bilaterally.

In our multivariate analysis, these two connections were also amongst
the most informative ones for distinguishing patients from controls (Fig-
ure 5.16). Schofield et al. (2012) also found group differences for inter-
hemispheric connection strengths between left and right Heschl’s gyrus,
but their univariate approach did not demonstrate any asymmetries. In
contrast, our multivariate approach yielded a sparser set of discriminative
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connections, highlighting the asymmetries of interhemispheric connections
described above (Figure 5.16).

Inference on discriminative models parameters. The above inter-
pretation is based on SVM feature weights; these can be dependent on
task-unrelated sources of variance in the data and may not always be inter-
pretable as such. One way of addressing this issue is to relate weights to
their empirical null distributions, i.e., those distributions that one would ob-
tain if no statistical relationship between model parameters and diagnostic
category existed. These distributions can be obtained by randomly per-
muting subject-specific labels and re-estimating the model N times based
on the new labels, where N is a large number. A p-value for each model
parameter can then be obtained as: the rank of the original feature weight
within the distribution of feature weights based on permuted labels, divided
by the number of permutations. Thus, to obtain a result at a given signifi-
cance level α, we must repeat model estimation at least N = 1/α times. If
this is is computationally infeasible, it is possible to run fewer permutations
and summarize the null distribution in terms of the mean and variance of
a Gaussian. We can then compute, for each model parameter θi, a score

ti = wi − µ̂i
σ̂i

∼ tN−1, (5.6.1)

where µ̂i and σ̂i denote the sample mean and standard deviation of weights
for parameter θi across all random permutations, and tN−1 is Student’s t-
distribution on N − 1 degrees of freedom. We will explore this approach
in more detail in future studies; for an initial application, see Brodersen,
Wiech, Lomakina et al. (under review).

Optimal decoding. The model-based classification approach described
in this chapter employs a biophysically and neurobiologically meaningful
model of neuronal interactions to enable a mechanistic interpretation of clas-
sification results. This approach departs fundamentally from more generic
decoding algorithms that operate on raw data, which may be considered
one end of a spectrum of approaches. At the other end lies what is often
referred to as optimal decoding.

In optimal decoding, given an encoding model that describes how a
cognitive state of interest is represented by a particular neuronal state, the
cognitive state can be reconstructed from measured activity by inverting
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the model. Alternatively, if the correct model is unknown, decoding can be
used to compare the validity of different encoding models. Recent examples
of this sort include the work by Naselaris et al. (2009) and Miyawaki et al.
(2008), who demonstrated the reconstruction of a visual image from brain
activity in visual cortex. Other examples include Paninski et al. (2007)
and Pillow et al. (2008), who inverted a generalized linear model for spike
trains. The power of this approach derives from the fact that it is model-
based: if the presumed encoding model is correct, the approach is optimal
(cf. Paninski et al., 2007; Pillow et al., 2008; Naselaris et al., 2009; Miyawaki
et al., 2008). However, there are two reasons why it does not provide a
feasible option in most practical questions of interest.

The first obstacle in optimal decoding is that it requires an encoding
model to begin with. In other words, an optimal encoding model requires
one to specify exactly and a priori how different cognitive states translate
into differential neuronal activity. Putting down such a specification may
be conceivable in simple sensory discrimination tasks; but it is not at all
clear how one would achieve this in a principled way in the context of more
complex paradigms. In contrast, a modelling approach such as DCM for
LFPs is agnostic about a pre-specified mapping between cognitive states
and neuronal states. Instead, it allows one to construct competing models
of neuronal responses to external perturbations (e.g., sensory stimuli, or
task demands), compare these different hypotheses, select the one with the
highest evidence, and use it for the construction of a feature space.

The second problem in optimal decoding is that even when the encoding
model is known, its inversion may be computationally intractable. This
limitation may sometimes be overcome by restricting the approach to models
such as generalized linear models, which have been proposed for spike trains
(e.g. Paninski et al., 2007; Pillow et al., 2008); however, such restrictions will
only be possible in special cases. It is in these situations where model-based
classification using generative embedding could provide a useful alternative.

Choice of classifier. Generative embedding is compatible with any type
of classifier, as long as its design makes it possible to reconstruct feature
weights, that is, to estimate the contribution of individual features to the
classifier’s success. For example, an SVM with a linear or a polynomial
kernel function is compatible with this approach, whereas in other cases
(e.g., when using a radial basis function kernel), one might have to resort to
computationally more expensive alternatives (such as a leave-one-feature-
out comparison of overall accuracies).
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It should also be noted that feature weights are not independent of the
algorithm that was used to learn them. In this chapter, for example, we
illustrated model-based classification using an SVM. Other classifiers (e.g.,
a linear discriminant analysis) might differ in determining the separating
hyperplane and could thus yield different feature weights. Also, when the
analysis goal is not prediction but inference on underlying mechanisms,
alternative methods could replace the use of a classifier (e.g., feature-wise
statistical testing).

Dimensionality of the feature space. Since it is model based, our ap-
proach involves a substantial reduction of the dimensionality of the original
feature space. Ironically, depending on the specific scientific question, this
reduction may render decoding and cross-validation redundant, since re-
ducing the feature space to a smaller dimensionality may result in having
fewer features than observations. In this situation, if one is interested in
demonstrating a statistical relationship between the pattern of parameter
estimates and class labels, one could use conventional encoding models and
eschew the assumptions implicit in cross-validation schemes.

In the case of the first LFP dataset, for example (Section 5.3), having
summarized the trial-specific responses in terms of seven parameter esti-
mates, we could perform multiple linear regression or an ANCOVA using
the parameter estimates as explanatory variables and the class label as a re-
sponse variable. In this instance, the ANCOVA parameter estimates reflect
the contribution of each model parameter to the discrimination and play
the same role as the weights in a classification scheme. In the same vein, we
could replace the p-value obtained from a cross-validated accuracy estimate
by a p-value based on Hotelling’s T 2-test, the multivariate generalization of
Student’s t-test.

In principle, according to the Neyman-Pearson lemma, this approach
should be more sensitive than the cross-validation approach whenever there
is a linear relationship between features and class labels. However, in addi-
tion to assuming linearity, it depends upon parametric assumptions and a
sufficient dimensionality reduction of feature space, which implies that the
classification approach has a greater domain of application.

An open question is how well our approach scales with an increasing
number of model parameters. For example, meaningful interpretation of fea-
ture weights might benefit from using a classifier with sparseness properties:
while the `2-norm support vector machine used here, by design, typically
leads to many features with small feature weights, other approaches such
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as sparse nonparametric regression (Caron and Doucet, 2008), sparse lin-
ear discriminant analysis (Grosenick et al., 2009), group-wise regularization
(van Gerven et al., 2009), or sparse logistic regression (Ryali et al., 2010)
might yield results that enable even better interpretation. One could also
attempt to directly estimate the mutual information between the joint dis-
tribution of combinations of model parameters and the variable of interest.
These questions will be addressed in future studies.

Dynamic and structural model selection. An important aspect in
generative embedding is the choice of a model. For the second LFP dataset
described in this chapter, for example, there was a natural choice between
three different connectivity layouts. The better the model of the neuronal
dynamics, the more meaningful the interpretation of the ensuing feature
weights should be. But what constitutes a ‘better model?’

Competing models can be evaluated by Bayesian model selection (BMS;
Friston et al., 2007; Penny et al., 2004; Stephan et al., 2009a). In this
framework, the best model is the one with the highest (log) model evidence,
that is, the highest probability of the data given the model (MacKay, 1992).
BMS has been very successful in model-based analyses of neuroimaging and
electrophysiological data. It also represents a generic and powerful approach
to model-based classification whenever the trial- or subject-specific class
labels can be represented by differences in model structure (Figure 5.27,
panel 1). However, there are two scenarios in which BMS is problematic
and where the approach suggested by this chapter may represent a useful
alternative.

The first problem is that BMS requires the explananda (i.e., the data
features to be explained) to be identical for all competing models. This
requirement is fulfilled, for example, for DCMs of EEG or MEG data, where
the distribution of potentials or fields at the scalp level does not change with
model structure. In this case, BMS enables both dynamic model selection
(i.e., concerning the parameterization and mathematical form of the model
equations) and structural model selection (i.e., concerning which regions
or nodes should be included in the model). However, when dealing with
fMRI or invasive recordings, BMS can only be applied if the competing
models refer to the same sets of brain regions or neuronal populations; this
restriction arises since changing the regions changes the data (Friston, 2009).
At present, BMS thus supports dynamic, but not structural, model selection
for DCMs of fMRI and invasive recordings. This restriction, however, would
disappear once future variants of DCM also optimize spatial parameters of
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Figure 5.27: Different perspectives on model selection. (1) Bayesian model
selection can be used to decide which model provides the best explanation of the data.
Competing models typically differ in their structure, while the data must be the same.
(2) A complementary perspective is provided by generative embedding, by asking which
model is best with respect to an external criterion. Incidentally, this enables model
selection even in those cases where the data (e.g., regions of interest) differ between
models.

brain activity.
Secondly, with regard to model-based classification, BMS is limited when

the class labels to be discriminated cannot be represented by models of dif-
ferent structure, for example when the differences in neuronal mechanisms
operate at a finer conceptual scale than can be represented within the cho-
sen modelling framework. In this case, discriminability of trials (or subjects,
respectively) is not afforded by differences in model structure, but may be
provided by different patterns of parameter estimates under the same model
structure (an empirical example of this case was described recently by Allen
et al., 2010). In other words, differences between trials (or subjects, respec-
tively) can be disclosed by using the parameter estimates of a biologically
informed model as summary statistics.

In both above scenarios, the approach proposed in this chapter enables
model comparison (Figure 5.27, panel 2), since model-based feature con-
struction can be viewed as a method for biologically informed dimensional-
ity reduction, and the performance of the classifier is related to how much
class information was preserved by the estimates of the model parameters.
In other words, training and testing a classifier in a model-induced feature
space means that classification accuracies can now be interpreted as the de-
gree to which the underlying model has preserved discriminative information
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about the features of interest. This view enables a classification-based form
of model comparison even when the underlying data (e.g., the chosen re-
gional fMRI time series or electrophysiological recordings) are different, or
when the difference between two models lies exclusively in the pattern of
parameter estimates.

If discriminability can be afforded by patterns of parameter estimates
under the same model structure, one might ask why not simply compare
models in which the parameters are allowed to show trial-specific (or subject-
specific) differences using conventional model comparison? One can cer-
tainly do this, however the nature of the inference is different in a subtle
but important way: the differences in evidence between trials (or subjects)
afforded by BMS are not the same as the evidence for differences between
trials (or subjects). In other words, a difference in evidence is not the
same as evidence of difference. This follows from the fact that the evidence
is a nonlinear function of the data. This fundamental distinction means
that it may be possible to establish significant differences in parameter es-
timates between trials (or subjects) in the absence of evidence for a model
of differences at the within-trial (or within-subject) level. This distinction
is related intimately to the difference between random- and fixed-effects
analyses. Under this view, the approach proposed in this chapter treats
model parameters as random effects that are allowed to vary across trials
(or subjects); it can thus be regarded as a simple random-effects approach
to inference on dynamic causal models.

In summary, our approach is not meant to replace or outperform BMS
in situations when it can be applied. In fact, given that BMS rests on
computing marginal-likelihood ratios and thus accords with the Neyman-
Pearson lemma, one may predict that BMS should be optimally sensitive in
situations where it is applicable (for an anecdotal comparison of BMS and
model-based classification, see Section 5.4.5). Instead, the purpose of the
present chapter is to introduce an alternative solution for model comparison
in those situations where BMS is not applicable, by invoking a different
criterion of comparison: in model-based classification, the optimal model
is the one that generalizes best (in a cross-validation sense) with regard to
discriminating trial- or subject-related class labels of interest.



Chapter 6

Model-based clustering

There is increasing pressure in the field of neuroimaging to translate basic
research into clinical applications, as reflected, for instance, by the growing
number of classification approaches that aim to provide automated diag-
nostic tools. In particular, an increasing number of studies have begun to
describe neurobiological markers for psychiatric disorders (Davatzikos et al.,
2005, 2008a,b; Fu et al., 2008; Misra et al., 2009; Nenadic et al., 2010; Klöp-
pel et al., 2008, 2009, 2012).

These studies have received much attention; but they also suffer from
two limitations. Firstly, conventional classification approaches are ‘blind’ to
domain knowledge and typically do not convey mechanistic insights. Sec-
ondly, their utility is limited in the sense that they are often replicating
diagnostic categories which are flawed themselves. In the domain of spec-
trum disorders, for example, diagnostic labels are based on purely symp-
tomatic descriptions rather than underlying pathophysiological differences.
As a result, these labels do not convey mechanistic insights, and they are
poor predictors of drug response or treatment outcome.

The examples described in the previous chapter have shown that gener-
ative embedding can be used to infer a diagnostic state using measures of
brain activity and, at the same time, convey mechanistic insights. However,
we have not yet addressed the issue of meaningful labels. In our fMRI appli-
cation, for example, the diagnostic status of each subject was known without
doubt and the networks involved in speech processing are well characterized.
This circumstance allowed us to provide an initial proof of principle for the
utility of generative embedding when labels are known.

177
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Above and beyond, however, we hope to use generative embedding for
addressing clinical problems of high practical relevance. In particular, we
hope that generative embedding may prove useful for dissecting psychi-
atric spectrum disorders, such as schizophrenia, into physiologically defined
subgroups (Stephan et al., 2009b). We therefore turn to cases where the
mechanisms underlying a given collection of symptoms are poorly under-
stood, and we will complement classification analyses by an additional, an
exploratory or unsupervised perspective.

This chapter proposes a model-based clustering approach that might
help discover mechanistically defined subgroups that are not known a priori.
We suggest a concrete implementation for fMRI data and apply our method
to a large group of patients diagnosed with schizophrenia and healthy con-
trols (n = 83). Full details will be provided in Brodersen et al. (in prepa-
ration).

Model-based clustering by generative embedding comprises six concep-
tual steps: (i) extraction of time series, (ii) modelling and model inversion,
(iii) embedding in a generative score space, (iv) clustering, (v) validation
with respect to clinical facts, and (vi) interpretation of the identified sub-
groups. The following sections briefly describe these steps (Figure 6.1).

6.1 Clustering and model selection
The critical difference between the approach proposed here and the proce-
dures presented in Chapter 5 is that a supervised classification algorithm is
replaced by an unsupervised clustering algorithm. This gives rise to a new
class of applications that turn from hypothesis testing towards exploratory
data analysis.

6.1.1 Extraction of time series
The first step in a model-based clustering analysis concerns the extraction
of data features that will be subject to modelling. Here, we use the same
approach to time-series extraction as described in Section 2.4 and used in
Section 5.5. Specifically, we begin by specifying a set of regions of interest
(ROIs) defined anatomically and by means of a functional contrast. We
then compute, for each region, the first eigenvariate based on all voxels
contained in that region, which yields a region-specific representative time
course of BOLD activity.
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Figure 6.1: Model-based clustering. This schematic illustrates how generative
embedding enables model-based clustering of fMRI data. First, BOLD time series are
extracted from a number of regions of interest, separately for each subject. Second,
subject-specific time series are used to estimate the parameters of a generative model.
Third, subjects are embedded in a generative score space, in which each dimension repre-
sents a specific model parameter. This space implies a similarity metric under which any
two subjects can be compared. Fourth, a clustering algorithm is used to identify salient
substructures in the data. Fifth, the resulting clusters are validated against known ex-
ternal (clinical) variables. In addition, a clustering solution can, sixth, be interpreted
mechanistically in the context of the underlying generative model.

In order to enable an unbiased clustering analysis, it is important that
the selection of time series is not based on group information. This means in
particular that between-group contrasts should not be used for the definition
of regions of interest (cf. Figure 5.13).

6.1.2 Modelling and model inversion

Generative embedding rests on the specification and inversion of a genera-
tive model of the data. As detailed in Chapters 2 and 5, we use a dynamic
causal model (DCM; Friston et al., 2003). DCM provides a mechanistic
model for explaining measured time series of brain activity as the outcome
of hidden dynamics in an interconnected network of neuronal populations
and its experimentally induced perturbations. Inverting such a model means
to infer the posterior distribution of the parameters of both a neuronal and
a forward model layer from observed responses within a given subject.
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6.1.3 Embedding in a generative score space
To obtain a clustering of subjects, one might represent each subject as
a vector of voxel-wise activity measurements over time. Such a feature
space would retain all information we have measured within each region
of interest. However, it would disregard the spatio-temporal structure of
the data as well as the process that generated them, which has motivated
the search for more natural ways of representing functional datasets. One
such way is to embed the data in a feature space that is constructed using
a generative model. This generative score space embodies a model-guided
dimensionality reduction of the observed data.

As pointed out previously, a straightforward way of creating a genera-
tive score space, using DCM, is to consider the posterior expectations of
model parameters of interest (e.g., parameters encoding synaptic connec-
tion strengths). More formally, we can define a mapping MΘ → Rd that
extracts a subset of point estimates µ̂ := 〈θ|x,m〉 from the posterior dis-
tribution p(θ|x,m). This simple d-dimensional vector space represents a
summary of the information encoded in the connection strengths between
regions, as opposed to activity levels within these regions. Alternatively,
one could also incorporate elements of the posterior covariance matrix into
the vector space.

It is worth emphasizing that, because a generative-embedding approach
rests upon a mechanistically motivated dynamic systems model, a model-
based feature space of the sort described above is implicitly based on a highly
nonlinear mapping: from individual measurement time points to posterior
parameter expectations of an underlying dynamical system. In addition, the
generative score space is not just driven by the data themselves; because the
generative model is inverted in a fully Bayesian fashion, the resulting space
incorporates domain knowledge and information from previous experiments
that drove the specification of the prior. These aspects may be critical when
aiming for an interpretable clustering solution, as described next.

6.1.4 Clustering
By model-based clustering we refer to the notion of using a clustering algo-
rithm in a generative score space, i.e., in a space in which each dimension
represents a model parameter. Here, we use a Gaussian mixture model
(GMM) for clustering, which we invert using a variational Bayes approach
(see Penny et al., in preparation, for a detailed description). This approach
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has two strengths. Firstly, it provides an approximation to the model evi-
dence which can be used for model-order selection, i.e., for deciding on the
number of clusters (conditional on their Gaussianity). Secondly, it produces
probabilistic output; this is in contrast to the support vector classifiers used
in Chapter 5 which only provided point estimates of class membership. One
could go even one step further and make the model order part of the model
itself. One common class of clustering models that support this are rooted
in nonparametric Bayesian inference (see Rasmussen, 2000; Dubey et al.,
2004; Iwata et al., 2012, for the underlying theory, an application, and a
more recent development).

In brief, a Gaussian mixture model defines a likelihood of the data xj ∈
Rd of a given subject j as

p(xj | µ,Σ, π) =
K∑
k=1

πkN (xj | µk,Σk) . (6.1.1)

The form of this likelihood is based on a model withK clusters. Each cluster
is defined in terms of a mean µk and a covariance matrix Σk, and so the
model as a whole is defined in terms of cluster means µ = (µ1, . . . , µK) and
covariance matrices Σ = (Σ1, . . . ,Σk). The data are modelled as belonging
to cluster k with probability πk; cluster membership k itself is defined as
an indicator variable, i.e., πk = p(kj = k | π). Thus, the log likelihood of a
full dataset of i.i.d. subjects j = 1 . . .m is given by

ln p (x | µ,Σ, π) =
m∑
j=1

ln
K∑
k=1

πkN (xj | µk,Σk) . (6.1.2)

The model can be inverted using the EM algorithm to find maximum-
likelihood estimates of cluster assignments as well as the cluster means and
covariances themselves. This approach is simple and efficient. However, it
can be prone to singularities when a Gaussian component collapses on a
single data point, causing the log likelihood to diverge to infinity. More-
over, a maximum-likelihood formulation of GMM assumes that the optimal
number of the Gaussian components be known a priori.

These limitations can be overcome using a variational Bayes approach
(Penny et al., in preparation). This approach entails the same advantages
we built on in Chapter 4 (Sections 4.5 and 4.6). It eschews the problem
of singularities by introducing regularizing priors over all parameters. In
addition, VB enables us to determine the optimal number of clusters by
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means of Bayesian model selection. Specifically, we can compute a free-
energy bound to the log model evidence

ln p(x) = ln
∫∫∫

p (x | µ,Σ, π) p(µ,Σ, π) dµdΣdπ, (6.1.3)

which enables model comparison. The model is re-estimated several times,
each time using a different number of clusters. The (approximate) log model
evidence is then used to decide on the optimal number of clusters, from
which we obtain the final clustering solution.

6.2 Validation

The clustering solution with the highest model evidence yields the most
likely substructure given the data and the GMM assumptions. However,
any clustering solution remains an untested hypothesis unless we explicitly
validate it against known structure that is external to the clustering model
itself. We therefore explicitly assess whether a given clustering solution
matches the structure implied by external variables.

External variables are often categorical. For instance, each subject might
be associated with a symptom-based diagnostic category, such as schizophre-
nia. In this case, we wish to assess how well the clustering solution matches
diagnostic categories. This goal can be achieved by computing the purity
of the solution.

Informally, purity ∈ [0, 1] measures how homogeneous the obtained clus-
ters are. A perfectly homogeneous cluster contains only subjects from the
same class; whereas a heterogeneous cluster contains a mixture of data
points from different classes. Homogeneous clusters indicate that the clus-
tering solution has picked up the implicit grouping structure defined by an
external variable which, critically, was unavailable at the time of clustering.
Another way of interpreting purity is by asking: what would the classifica-
tion accuracy of an algorithm be that assigned each example to the majority
class within its cluster? This accuracy is the purity of the solution. Under
this view, purities can be meaningfully compared with accuracies.

To compute the purity of a solution, all data points are conceptually
assigned to the class label that occurs most frequently in the associated
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cluster. Purity is then calculated as

purity(Ω,C) := 1
n

K∑
k=1

max
j
|ωk ∩ cj | , (6.2.1)

where n is the number of subjects, Ω = (ω1, ω2, . . . , ωk) is the set of cluster
assignments, and C = (c1, c2, . . . , cj) is the set of true classes. The term
|ωk∩cj | represents the number of subjects in cluster k with external label j.
Thus, purity is a number between 0 and 1 and indicates the degree to which
the obtained clustering solution agrees with grouping structure implied by
an external categorical variable.

One limitation of the purity in (6.2.1) is its misleading nature when ap-
plied to imbalanced datasets. The underlying issue is exactly the same as
with classification accuracy, which is a misleading measure of classification
performance when the data are not perfectly balanced. In these cases, the
balanced accuracy is a more useful performance measure as it removes the
bias that may arise when applying a classification algorithm to an imbal-
anced dataset. Here, we introduce the same idea to provide bias correction
for the purity of a clustering solution. Specifically, we define the balanced
purity as

bp(Ω,C) :=
(

1− 1
n

)(
purity(Ω,C)− ξ

1− ξ

)
+ 1
n
. (6.2.2)

In the above expression, ξ is the degree of imbalance in the data, defined
as the fraction of subjects associated with the largest class. When cluster
assignments perfectly agree with the external variable, the balanced purity
is 1. By contrast, when cluster assignments are random, the quantity drops
to 1/K. In this way, the balanced purity can be interpreted in the same
way as the (balanced) accuracy of a classification algorithm. It indicates
the probability with which a new subject with label ỹ would be assigned to
a cluster in which the majority of subjects have the same label ỹ.

External variables may be continuous rather than categorical. For exam-
ple, we might want to assess to what extent an obtained clustering solution
is related to a (continuous) measure of symptoms or clinical outcome. In
this case, the concept of purity no longer applies. Instead, we could validate
a solution, for instance, by testing the (null) hypothesis, using a one-way
ANOVA, that the distribution of the external variable has the same mean in
all clusters. Examples of both categorical and continuous external variables
for validation will be considered in the next section.
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6.3 Application to synthetic fMRI data
The application of model-based clustering using generative embedding will
be described in the context of two separate datasets. First, we generate
synthetic fMRI data to illustrate the individual analysis steps and to cla-
rify the conceptual difference between model selection and model validation.
Second, we apply our approach to an fMRI dataset acquired in schizophre-
nia patients and healthy controls (n = 83) and demonstrate the nature of
insights that can be gained using a generative-embedding approach.

Data generation

To illustrate the key features of our analysis approach, we generated four
synthetic fMRI datasets and applied a model-based clustering analysis to
each of them (Figure 6.2).

To begin with, we specified ground-truth connection parameters forK =
2 groups with 40 subjects each, totalling n = 80 subjects (Figure 6.2, top
left plot within each panel). The two groups differed only in the strength
of the modulatory input on regions 1 and 2. In particular, the influence of
region 1 on region 2 was strongly influenced by external modulatory input
in group 1 but not group 2 (encoded by the model parameter B21). In group
2, conversely, this influence affected the effective connectivity from region
2 to region 1 (model parameter B12). To induce population variability,
connections were sampled from group-specific population distributions:

p

((
B21

B12

) ∣∣∣∣ k1

)
= N

((
B21

B12

) ∣∣∣∣ (−1
1

)
,

(
ψ 0
0 ψ

))
for group 1; (6.3.1)

p

((
B21

B12

) ∣∣∣∣ k1

)
= N

((
B21

B12

) ∣∣∣∣ ( 1
−1

)
,

(
ψ 0
0 ψ

))
for group 2. (6.3.2)

We induced different degrees of group separability by varying the population
variance ψ between 1/2 (Figure 6.42, left column) and 1/20 (right column).

To obtain a synthetic BOLD signal, we generated a neuronal trajectory
for each subject and added Gaussian observation noise. We induced dif-
ferent signal-to-noise ratios (SNR) by varying the noise variance between 1
and 10. We then used the conventional full Bayesian approach implemented
in SPM8/DCM10 to (re)estimate the underlying parameters from the syn-
thetic BOLD time series. Model inversion was carried out independently
for each subject and, critically, was uninformed by group membership.
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Figure 6.2: Dynamic causal model underlying synthetic fMRI data. Data were
generated for two subgroups using two simple four-region models. The only difference
between the groups concerned the modulatory connections (B21 and B12).

Differences in population variability and SNR are reflected by the accu-
racy of the parameter estimates (Figure 6.3, bottom left plot within each
panel). Posterior means agreed nicely with the true parameters when the
SNR was high or groups were clearly separated. By contrast, group bound-
aries became less well-defined when low group separability was combined
with a low SNR ratio. In all simulations, parameter estimates display a
clearly noticeable shrinkage effect towards zero, as induced by the conser-
vative shrinkage prior on modulatory connections.

Model-based clustering

Separately for each synthetic dataset, we applied model-based clustering for
K = 1 . . . 5 clusters by fitting a Gaussian mixture model to DCM parameter
estimates. In the case of low group separability and low SNR (Figure 6.3c),
the highest model evidence was obtained by a clustering solution with 3 dis-
tinct clusters, that is, inference was biased towards too large a number of
groups (Figure 6.3c). In all other scenarios, the clustering algorithm cor-
rectly inferred the true number of clusters (K = 2; Figure 6.3a,b,d). To
minimize the effects of algorithm initialization, each analysis was repeated
10 times with randomly sampled initial cluster locations.

To assess how well the obtained clustering solutions agreed with the
true group structure, we computed the balanced purity1 for each clustering

1In this particular case, since the simulated data were perfectly balanced across groups,
the balanced purity reduced to the conventional purity (see Section 6.2 on p. 182).
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Figure 6.3: Model-based clustering results on synthetic fMRI data. Panels
a–d represent simulations based on different signal-to-noise ratios and degrees of group
separation. The four plots within each panel show: the true parameters (top left); their
posterior mean estimates based on generated fMRI data (bottom left); the log model
evidence of clustering solutions with different numbers of clusters (i.e., model selection;
top right); and the balanced purity of these clustering solutions with respect to true
group membership (i.e., model validation; bottom right).

solution. We observed that in those cases where the correct number of
clusters had been inferred, the corresponding clustering solution showed a
perfect purity of 100%.

The above analyses do not guarantee the feasibility of model-based clus-
tering in its full generality; but they do illustrate how, in principle, salient
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structure can be successfully discovered by generative embedding in situ-
ations of sufficient group separation and signal-to-noise ratio. We will next
apply the same approach to empirical fMRI data.

6.4 Application to schizophrenia
To demonstrate the utility of model-based clustering in a clinical setting, we
analysed a large fMRI dataset (n = 83) based on (i) a group of 41 patients
diagnosed with schizophrenia (10 female; mean age 34.1 years; SD 10.4);
and (ii) a group of 42 healthy controls (19 female; mean age 35.4; SD 12.2).
In this study, subjects were engaged in a simple working memory task while
undergoing fMRI. A brief summary of the task, data acquisition, and pre-
processing is provided below; we refer to Deserno et al. (2012) for details.

In brief, functional imaging data were acquired on a 1.5 T MRI scanner
(Siemens Magnetom Vision) using whole-brain gradient-echo echo-planar
imaging (TR 2600 ms; TE 40 ms; flip angle 90◦; matrix 64× 64; voxel size
4×4×5.5mm3). Volumes were realigned to a mean image of both functional
time series to correct for between-scan movements. The mean image was
normalized to the MNI standard EPI template, and the parameters obtained
in the normalization matrix were applied to the realigned images, which were
resliced with a voxel size of 4× 4× 4mm3. The resulting images were then
spatially smoothed using an isotropic Gaussian kernel (FWHM 8 mm).

In previous work, these data have been analysed using a conventional
general linear model (GLM) and DCM; the results are described in Deserno
et al. (2012). Here, we re-examined the dataset using the procedure shown
in Figure 6.1 and the DCM shown in Figure 6.4.

Model inversion was carried out, separately for each subject, in an un-
supervised fashion, i.e., without reference to the subjects’ diagnostic status.
We constructed a generative score space on the basis of the posterior means
of all neuronal model parameters. The resulting space contained 12 fea-
tures: 6 interregional connections as well as 3 self-connections (A matrix);
2 modulatory parameters (B matrix); and 1 input parameter (C matrix).
Using this feature space, we asked whether the difference between patients
and healthy controls would emerge as the most salient structure in the gen-
erative score space.

Without further processing of this space, it is possible that analysis re-
sults are driven by salient features in the data other than clinical variables
such as diagnostic status. We therefore regressed out sex, handedness, and
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PC dLPFC 

VC 

WM 

stimulus 

Figure 6.4: Dynamic causal model of working-memory activity. The model
consists of three fully-connected nodes representing activity in the visual cortex (VC),
dorsolateral prefrontal cortex (dlPFC), and parietal cortex (PC). Stimulus input enters
the system in the visual cortex, whereas the working-memory condition in the experiment
may modulate bottom-up effective connectivity from VC to dlPFC and PC.

age, using a separate multiple linear regression model for each model pa-
rameter. Thus, model-based classification was carried out on the residuals
of parameter estimates after removing demographic confounds.

Model-based classification

Before turning to model-based clustering, we adopted a supervised approach
and used model-based classification (Chapter 5) to distinguish between pa-
tients and healthy controls. Specifically, we trained and tested a linear
support vector machine (Chang and Lin, 2011) on subject-specific connec-
tivity patterns, i.e., using the posterior expectations of DCM parameters
(Figure 6.5a).

This model-based classification algorithm was able to separate patients
and controls with a balanced accuracy of 78% (infraliminal probability
p < 0.01). We compared this result to an alternative approach in which
the classifier operated on estimates of (undirected) functional connectivity
rather than posterior means of effective connectivity. Following the same
procedure as in Chapter 5, functional connectivity was computed in terms
of Pearson correlation coefficients among eigenvariates of BOLD time series
(cf. Figure 5.21e). This approach yielded a classification accuracy of 61%.
While this was still significantly above chance (p < 0.05), it was significantly
outperformed by generative embedding (p < 0.01). Thus, the overall accu-
racy of 78% provided a baseline measure of how well patients and healthy
controls can be separated when the identity of each subject in the training
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data is known a priori.
Importantly, however, it is not classification analyses of this sort where

generative embedding may prove maximally useful. Rather, we want to
ask whether substructures would emerge even in the absence of a priori
knowledge about their existence.

Model-based clustering of all subjects

Using the variational clustering algorithm described above, we performed
a model-based clustering analysis of all subjects, based on their posterior
parameter estimates. The purpose of this first clustering analysis was to as-
sess whether our model would be sufficiently sensitive to detect differences
between patients and healthy controls in the absence of any a priori know-
ledge about the very existence of these two groups, let alone their clinical
validity.

We found that the highest model evidence was obtained by a Gaussian
mixture model with two clusters (Figure 6.5b). This model outperformed
the next-best model by a log Bayes factor (BF) of 66.0, providing very strong
evidence that a model with two clusters provided the best explanation of
the data within our hypothesis class of Gaussian mixture models.

Asking to what degree the best clustering solution matched known struc-
ture in the data, we obtained a balanced purity of 71% with regard to the
known diagnostic distinction between schizophrenia and healthy controls.
In other words, without any a priori knowledge about the existence of
schizophrenia among the group of participants, the above clustering analysis
concluded that there are two groups in the data, and, notably, these groups
largely matched the difference between healthy participants and those di-
agnosed with the disease.

This result is reassuring; however, it ultimately only provides the con-
firmation of a diagnostic category that is already known and that can be
obtained much easier by means of a conventional clinical questionnaire. This
motivated the final analysis, described next, in which we focused exclusively
on the group of patients, leaving aside healthy controls. In this analysis,
we asked whether model-based clustering would yield substructures which
are not yet captured by current diagnostic schemes and which might have
been masked by the more salient difference between patients and healthy
controls in the clustering analysis above.
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Figure 6.5: Model-based classification and clustering results. (a) In an initial
supervised approach, we compared a model-based classification approach (based on pa-
rameter estimates of a DCM) with a more conventional approach (based on undirected
estimates of functional connectivity). With an accuracy of 78%, generative embedding
outperformed this alternative approach and enabled a clear separation between partici-
pants diagnosed with schizophrenia and healthy controls. (b) In a subsequent unsuper-
vised approach, a Gaussian mixture model (GMM) was used to evaluate what structure
emerged in the absence of any a priori knowledge about diagnostic status. The highest
evidence was obtained for a model with two clusters. Notably, the clustering implied by
this model matched known diagnostic categories with a purity of 71%, which is a rather
competitive degree of discrimination even in relation to supervised approaches.

Model-based clustering of patients

Using model-based clustering on the group of participants diagnosed with
schizophrenia, we obtained the highest model evidence for a clustering so-
lution with three clusters (Figure 6.6a). There was very strong evidence
that this solution was better than the next best model which contained
only two clusters (log BF = 29.1). This result indicates that the absence
of healthy controls may indeed have unmasked a more subtle distinction
among patients, disclosing a group structure with three distinct clusters.

Since the clusters were identified in a DCM-based generative score space,
differences between clusters can be examined in terms of their implied dy-
namic systems models. Here, we investigated the structure of the DCM
corresponding to each posterior cluster mean (Figure 6.6b).

Before returning to the interpretation of these clusters, we examined
their potential clinical validity. We carried out a one-way ANOVA sepa-
rately for two clinical variables of interest. The first one encoded chlorpro-
mazine equivalents (CPZ) which represent a drug-independent measure of
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Figure 6.6: Model-based clustering results on patients. (a) When focusing on the
group of patients diagnosed with schizophrenia, the highest model evidence is obtained for
a model with three clusters. (b) The centroid of each cluster can be interpreted in terms
of the underlying system. (c) Notably, the three clusters identified here differ significantly
in terms of the positive and negative symptom score (PANSS) of schizophrenia (one-way
ANOVA, p < 0.05).

medication. The second variable encoded scores on the traditional ‘positive
and negative symptom scale’ (PANSS; Kay et al., 1987) which represents a
measure of symptom severity in patients with schizophrenia.

No significant differences in CPZ equivalents were found between clus-
ters. By contrast, and this result was striking, PANSS scores differed sig-
nificantly between clusters (p < 0.05). Very simply speaking, cluster 1
comprised patients with symptom scores between 20 and 30; cluster 2 con-
tained those with scores between 30 and 40; and cluster 3 those between
40 and 50 (Figure 6.6c). One might have decided to split patients across
these boundaries based on intuition or experience; but here both the num-
ber of subgroups and their exact boundaries emerged automatically, based
on salient mechanistic differences in effective connectivity.
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These differences between clusters disclosed potentially interesting mech-
anisms. Patients in the first cluster were characterized by strong effective
connectivity throughout, with medium modulation by working-memory task
demands. Patients in the second cluster, in contrast, displayed much lower
connectivity on average and only a small amount of modulatory influences.
In the third cluster, finally, connectivity was fairly low throughout except
for the influence that activity in the visual cortex exerted onto the dorso-
lateral prefrontal cortex which was strongly modulated by working memory
(cf. Figure 6.6b).

In summary, there was no obvious linear relationship between model pa-
rameters and external clinical scores. Rather, the clustering algorithm had
picked up patterns of model parameters which seemed to exhibit a nonlin-
ear relationship with clinical symptom scores and which delineated these
into three groups. To avoid repetition, we will evaluate the implications of
this initial proof of concept in conjunction with an overall discussion of the
material presented in this thesis in the final chapter.



Chapter 7

Conclusions

Generative embedding provides several characteristics that set it apart from
conventional analyses of high-dimensional time series, as discussed below.

Model-based classification

Generative embedding can be used as a basis for model-based classification
algorithms. When used in this way, the approach combines the explanatory
strengths of generative models with the classification power of discriminative
classifiers. Thus, in contrast to purely discriminative or purely generative
methods, generative embedding is a hybrid approach. It fuses a feature
space capturing both the data and the underlying generative process with
a classifier that finds, for instance, the maximum-margin boundary of class
separation.

It is possible to define a problem-specific kernel and combine it with
a general-purpose algorithm for discrimination. This makes our approach
modular and widely applicable, for instance to different acquisition modal-
ities.

Intuitively, our results exploit the idea that differences in the generative
process between two examples (observations) provide very rich discrimina-
tive information for accurate predictions. In the case of DCM for fMRI, this
rationale should pay off whenever the directed connection strengths between
brain regions contain more information about a disease state than regional
activations or undirected correlations.

This is indeed what we found in our initial analysis of stroke patients
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(Figure 5.21). It is also what we found in our subsequent analysis of patients
diagnosed with schizophrenia (Figure 6.5a). It has long been suspected that
a DCM-informed data representation might prove particularly relevant in
psychiatric disorders, such as schizophrenia or depression, where aberrant
effective connectivity and synaptic plasticity are central to the disease pro-
cess (Castren, 2005; Stephan et al., 2009b). Our results provide support for
this hypothesis.

Interpretability

Generative embedding enables a mechanistic and intuitive interpretation of
features and their weights, an important property not afforded by most con-
ventional classification methods (Lao et al., 2004; Thomaz et al., 2004). By
using parameter estimates from a mechanistically interpretable model for
constructing a feature space, the subsequent classification no longer yields
‘black box’ results but allows one to assess the relative importance of dif-
ferent mechanisms for distinguishing groups (e.g., whether or not synaptic
plasticity alters the strengths of certain connections in a particular context).

Put differently, generative embedding embodies a shift in perspective:
rather than representing sequential data in terms of high-dimensional and
potentially extremely noisy trajectories, we are viewing the data in terms
of the coefficients of a much more well-behaved model of system dynamics.

In this sense, models like DCM, when used in the context of generative
embedding, turn the curse of dimensionality faced by conventional classifica-
tion methods into a blessing: the higher the spatial and temporal resolution
of the underlying fMRI data, the more precise the resulting DCM parameter
estimates, leading to more accurate predictions.

It is also worth pointing out that generative embedding does not need
to rest on a generative model of brain activity. Other types of data could be
represented using the exact same techniques. In particular, given a genera-
tive model of behaviour, one could create a generative score space in which
each feature corresponds to a model parameter that represents a particular
latent feature of reasoning, learning, or decision making. We previously
suggested an example for a generative model of this sort in the domain
of decision making (Brodersen et al., 2008). This model combined com-
putational aspects of a Bayesian learner with the potential physiological
mechanisms supporting these computations. It thus represented an exam-
ple of what one might view as a neurocomputational model. The model
was sufficiently descriptive to provide a unique characterization of all three
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pilot subjects participating in the study. The more recent literature in this
domain includes the models by Daunizeau et al. (2010) and Mathys et al.
(2011). Using such models, generative embedding might provide a strategy
for coercing subject-specific model parameters into neurocomputational fin-
gerprints which can then be submitted to group analyses.

Model-based clustering

It is envisaged that an increasingly relevant facet of generative embedding
will be its utility for model-based clustering. Specifically, when a reliable
and meaningful grouping structure has not yet been established, model-
based clustering approaches, such as the one presented in Chapter 6, make
it possible to generate an initial hypothesis about subgroups. Any such
hypothesis can subsequently be validated against an external variable rep-
resenting, for instance, known clinical facts. Because the approach is based
on a biophysical model of the data, it is conceivable that this approach has
a higher likelihood of leading to clinically valid clusters.

Model comparison

Finally, generative embedding is tightly related to questions of model com-
parison. For any given dataset, there is an infinite number of possible
dynamic causal models, differing in the number and location of nodes, in
connectivity structure, and in their parameterization (e.g., priors). Compet-
ing models can be compared using Bayesian model selection (BMS; Penny
et al., 2004; Stephan et al., 2007a; Friston et al., 2007; Stephan et al., 2009a),
where the best model is the one with the highest model evidence, that is, the
highest probability of the data given the model (MacKay, 1992). However,
there are two scenarios in which BMS is problematic and where classification
based on generative embedding may represent a useful alternative.

First, BMS requires the data to be identical for all competing models.
Thus, in the case of current implementations of DCM for fMRI, BMS en-
ables dynamic model selection (concerning the parameterization and math-
ematical form of the model equations) but not structural model selection
(concerning which regions or nodes should be included in the model).

Second, BMS is limited when different groups cannot be mapped onto
different model structures, for example when the differences in neuronal
mechanisms operate at a finer conceptual scale than can be represented
within the chosen modelling framework. In this case, discriminability of
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subjects may be afforded by differences in (combinations of) parameter es-
timates under the same model structure (see Allen et al., 2010, for a recent
example).

In both these scenarios, the approach proposed in this thesis may provide
a solution, in that the unsupervised creation of a generative score space can
be viewed as a method for biologically informed feature extraction, and
classification accuracy or clustering purity can be viewed as measures of
how much class information is encoded in the model parameters. This view
enables a form of model comparison in which the best model is the one that
enables the highest discriminability (cf. Figure 5.27).

Notably, this procedure can be applied even when (i) the underlying data
(e.g., the chosen regional fMRI time series) are different, or when (ii) the
difference between two models lies exclusively in the pattern of parameter
estimates. In this thesis, we have illustrated both ideas: structural model
selection to decide between a full model and two reduced models that disre-
gard one hemisphere; and dynamic model selection to distinguish between
different groups of subjects under the same model structure.

In summary, BMS evaluates the goodness of a model with regard to
its generalizability for explaining the data, whereas generative embedding
evaluates a model in relation to an external criterion, i.e., how well it allows
for inference on group membership of any given subject. This difference is
important as it highlights that the concept of a ‘good’ model can be based
on fundamentally different aspects, and one could imagine scenarios where
BMS and generative embedding arrive at opposing results. If, for example,
discriminability of groups relies on a small subspace of the data, then one
model (which provides a good accuracy-complexity trade-off for most of the
data except that subspace) may have higher evidence, but another model
that describes this subspace particularly well but is generally worse for the
rest of the data may result in better classification performance or clustering
purity. We will examine the relation and complementary nature of BMS
and generative-embedding approaches in future work.

Inference on mechanisms for clinical applications

We hope that the approach presented in this thesis will be useful for address-
ing clinical problems of high practical relevance, for instance for dissecting
psychiatric spectrum disorders, such as schizophrenia, into physiologically
defined subgroups (Stephan et al., 2009b), or for predicting the response of
individual patients to specific drugs. While an increasing number of stud-
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ies have tried to describe neurobiological markers for psychiatric disorders
(Davatzikos et al., 2005, 2008a,b; Fu et al., 2008; Misra et al., 2009; Ne-
nadic et al., 2010; Klöppel et al., 2008, 2009, 2012), we argue that these
studies should be complemented by model-based approaches for inferring
biologically plausible mechanisms.

These could become useful in three ways: (i) to generate clinical hy-
potheses by dissecting a group of patients with similar symptoms into me-
chanistically defined subgroups; (ii) to harvest the potentially rich discrim-
inative information encoded in aspects of synaptic plasticity or neuromod-
ulation to build classifiers which, perhaps in conjunction with behavioural
learning paradigms and pharmacological challenges, distinguish between dif-
ferent subtypes of a psychiatric disorder on a physiological basis; and (iii) to
decide between competing hypotheses about neural mechanisms, based on
the model evidence, on classification accuracy, or on clustering purity.

In the case of the two fMRI datasets analysed in this thesis, generative
embedding yielded stronger classification performance than conventional
methods, whether they were based on activations or regional correlations.
One might at first imagine that this superior ability to accurately group
individual subjects determines the clinical value of the approach. Instead,
we argue that its clinical value will ultimately depend on whether patients
that share the same symptoms can be differentially treated according to the
underlying pathophysiology of the disorder. Generative embedding, using
biologically plausible and mechanistically interpretable models, may prove
critical in establishing diagnostic classification schemes that distinguish be-
tween pathophysiologically distinct subtypes of spectrum diseases and allow
for predicting individualized behavioural and pharmacological therapy.

Statistical paradigms

Methodologically, the research presented in this thesis began with elements
of classical parametric statistics (e.g., the general linear model and t-tests
for univariate feature selection), nonparametric statistics (e.g., permutation
tests for feature interpretation), and statistical learning theory (e.g., kernels
and support vector machines).

The more recent building blocks, in contrast, were based on Bayesian
inference with its elements of probabilistic graphical models (e.g., mixed-
effects inference), stochastic inference methods (e.g., MCMC) and varia-
tional approximations (e.g., VB). These methods have proven extremely
powerful, flexible, and efficient. Our future research will continue to take
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full advantage of the Bayesian paradigm and increasingly move from algo-
rithmic pipelines of independent building blocks towards integrated models
and their efficient inversion.
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Appendix A

Inversion of the
beta-binomial model

A.1 Algorithm for stochastic approximate
inference

The algorithm is initialized by drawing initial values for α(0) and β(0) from
an overdispersed starting distribution. We represent these as

ω(0) =
(

ln
(
α(0)

β(0)

)
, ln
(
α(0) + β(0)

))T

. (A.1.1)

The above coordinate transformation makes sampling more efficient (Gel-
man et al., 2003). On each iteration τ , a new candidate ω∗ is drawn from
a symmetric proposal distribution

qτ

(
ω∗
∣∣∣ ω(τ−1)

)
= N2

(
ω∗
∣∣∣∣ ω(τ−1),

(
1/8 1
1 1/8

))
. (A.1.2)

This candidate sample ω∗ is accepted with probability

min
{

1, p(k1:m | α∗, β∗) p(α∗, β∗)
p(k1:m | α(τ−1), β(τ−1)) p(α(τ−1), β(τ−1))

}
(A.1.3)

= min

1, exp

 m∑
j=1

f(α∗, β∗, kj)− f(α(τ−1), β(τ−1), kj)

 (A.1.4)
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where (4.3.6) and (4.3.9) (main text) were used in defining

f(α, β, k) := lnBb(k | α, β) + ln p(α, β). (A.1.5)

In order to assess whether the mean classification performance achieved
in the population is above chance, we must evaluate our posterior know-
ledge about the population parameters α and β. Specifically, inference on
α/(α + β) serves to assess the mean accuracy achieved in the population.
For example, its posterior expectation represents a point estimate that min-
imizes a squared-error loss function,

E
[

α

α+ β

∣∣∣∣ k1:m

]
≈ 1
c

c∑
τ=1

α(τ)

α(τ) + β(τ) . (A.1.6)

Another informative measure is the posterior probability that the mean
classification accuracy in the population does not exceed chance,

p = P

(
α

α+ β
≤ 0.5

∣∣∣∣ k1:m

)
≈ 1
c

#
{

α(τ)

(α(τ) + β(τ) ≤ 0.5
}
, (A.1.7)

which we refer to as the (posterior) infraliminal probability of the classifier.
The symbol #{·} denotes a count of samples.

When we are interested in the classification accuracies of individual sub-
jects, we wish to infer on p(πj | k1:m). This density fully characterizes our
posterior uncertainty about the true classification accuracy in subject j.
Given a pair of samples α(τ), β(τ), we can obtain samples from these poste-
rior distributions simply by drawing from

Beta
(
π

(τ)
j

∣∣∣ α(τ) + kj , β
(τ) + nj − kj

)
. (A.1.8)

This can be derived by relating the full conditional

p(πj | α, β, π1:j−1,j+1:m, k1:m) (A.1.9)

to the closed-form posterior in (4.3.8) (see main text; cf. Gelman et al.,
2003).

In order to infer on the performance that may be expected in a new sub-
ject from the same population, we are interested in the posterior predictive
density,

p(π̃ | k1:m), (A.1.10)
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in which π̃ denotes the classification accuracy in a new subject drawn from
the same population as the existing group of subjects with latent accuracies
π1, . . . , πm.1 Unlike the posterior on α/(α + β), the posterior predictive
density on π̃ reflects both the mean and the variance of the performance
achieved in the population.2

In order to derive an expression for the posterior predictive distribution
in closed form, one would need to integrate out the population parameters
α and β,

p(π̃ | k1:m) =
∫∫

p(π̃ | α, β) p(α, β | k1:m) dα dβ, (A.1.11)

which is analytically intractable. However, the integral shows that values
can be drawn from the posterior predictive density on π̃ using a single
ancestral-sampling step. Specifically, within each iteration τ , the current
samples α(τ) and β(τ) can be used to obtain a new sample π̃(τ) by drawing
from

Beta
(
π̃(τ)

∣∣∣ α(τ), β(τ)
)
. (A.1.12)

Once a number of samples from p(π̃ | k1:m) have been obtained, summariz-
ing posterior inferences becomes straightforward, e.g., by reporting

p(π̃ ≤ 0.5) ≈ 1
c

#{π(τ) ≤ 0.5}, (A.1.13)

which represents the probability that the classifier, when applied to a new
subject from the same population, will not perform better than chance.

A.2 Classical shrinkage using the James-Stein
estimator

When inferring on subject-specific accuracies πj , the beta-binomial model
uses data from the entire group to inform inferences in individual subjects.

1As noted before, the term ‘posterior predictive density’ is sometimes exclusively used
for densities over variables that are unobserved but observable in principle. Here, we use
the term to refer to the posterior density of any unobserved variable, whether observable
in principle (such as k̃) or not (such as π̃).

2If data were indeed obtained from a new subject (represented in terms of k̃ correct
predictions in ñ trials), then p(π̃ | k1:m, n1:m) would be used as a prior to compute the
posterior p(π̃ | k̃, ñ, k1:m, n1:m).
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Effectively, subject-specific posteriors are ‘shrunk’ to the population mean.
This is in contrast to using sample accuracies π̂ = kj/nj as individual
estimates. In classical inference, a similar shrinkage effect can be achieved
using the positive-part James-Stein estimator (James and Stein, 1961). It
is given by

π̂JS
1:m = (1− ξ)¯̂π1:m + ξπ̂1:m (A.2.1)

ξ =
(

1− (m− 2) σ̂2
m(π̂1:m)

‖π̂1:m − ¯̂π1:m‖22

)+

(A.2.2)

where π̂1:m = (kj/nj)1:m is a vector of sample accuracies, ¯̂π1:m is its sample
average, and σ̂2

m denotes the population standard deviation. The weighing
factor ξ balances the influence of the data (π̂j for a given subject j) and the
population (¯̂π1:m) on the estimate.



Appendix B

Inversion of the bivariate
normal-binomial model

B.1 Algorithm for stochastic approximate
inference

The algorithm is initialized by drawing initial values for µ(0), Σ(0), and
ρ

(0)
1 , . . . , ρ

(0)
m from overdispersed starting distributions. On each iteration

τ = 1 . . . c, we update one variable after another, by sampling from the
full conditional distribution of one variable given the current values of all
others.1 We begin by finding a new sample (µ(τ),Σ(τ)), which can be im-
plemented in a two-step procedure (Gelman et al., 2003). We first set

κm = κ0 +m (B.1.1)
νm = ν0 +m (B.1.2)

µm = κ0

κm
µ0 + m

κm
ρ̄(τ−1) (B.1.3)

S = Σmj=1

(
ρ

(τ−1)
j − ρ̄(τ−1)

)(
ρ

(τ−1)
j − ρ(τ−1)

)T
(B.1.4)

Λm = Λ0 + S + κ0m

κm

(
ρ̄(τ−1) − µ0

)(
ρ̄(τ−1) − µ0

)T
, (B.1.5)

1Here, we define one iteration as an update of all latent variables. Alternatively, one
could update just one variable (or a subset of variables) per iteration, chosen randomly
or systematically, as long as each variable is updated periodically.
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where ρ̄(τ−1) := 1
m

∑m
j=1 ρ

(τ−1), to draw

Σ(τ) ∼ Inv-Wishartνm
(

Σ(τ)
∣∣∣ Λ−1

m

)
. (B.1.6)

We then complete the first step by drawing

µ(τ) ∼ N2

(
µ(τ)

∣∣∣ µm, Σ(τ)/κm

)
, (B.1.7)

which we can use to obtain samples from the posterior mean balanced ac-
curacy using

φ(τ) := 1
2

(
µ

(τ)
1 + µ

(τ)
2

)
. (B.1.8)

Next, we update the bivariate variables ρ1, . . . , ρm. For each subject j, we
wish to draw from the full conditional distribution

p
(
ρ

(τ)
j

∣∣∣ k+
1:m, k

−
1:m, ρ

(τ)
1:j−1, ρ

(τ−1)
j+1:m, µ

(τ),Σ(τ)
)

(B.1.9)

= p
(
ρ

(τ)
j

∣∣∣ k+
j , k

−
j , µ

(τ),Σ(τ)
)
, (B.1.10)

which we have simplified by omitting all variables that are not part of the
Markov blanket of ρj (cf. Figure 4.8b). Because we cannot sample from
this distribution directly, we generate a candidate from a symmetric proxy
distribution

q(ρ∗j ) = N2

(
ρ∗j

∣∣∣∣∣ ρ(τ−1)
j ,

(
1 0
0 1

)T
)
, (B.1.11)

and then construct a Metropolis acceptance test. For this, we note that

p
(
ρ∗j

∣∣∣ k+
j , k

−
j , µ

(τ),Σ(τ)
)

(B.1.12)

∝ p̃
(
ρ∗j

∣∣∣ k+
j , k

−
j , µ

(τ),Σ(τ)
)

(B.1.13)

= p
(
k+
j , k

−
j

∣∣∣ ρ∗j , µ(τ),Σ(τ)
)
p
(
ρ∗j

∣∣∣ µ(τ),Σ(τ)
)

(B.1.14)

= p
(
k+
j , k

−
j

∣∣ ρ∗j) p(ρ∗j ∣∣∣ µ(τ),Σ(τ)
)

(B.1.15)

= p
(
k+
j

∣∣ ρ∗j,1) p (k−j ∣∣ ρ∗j,2) p(ρ∗j ∣∣∣ µ(τ),Σ(τ)
)

(B.1.16)

= Bin
(
k+
j

∣∣ σ(ρ∗j,1)
)
Bin

(
k−j
∣∣ σ(ρ∗j,2)

)
N2

(
ρ∗j

∣∣∣ µ(τ),Σ(τ)
)
, (B.1.17)
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where (B.1.13) places our focus on the unnormalized density, (B.1.14) uses
Bayes’ theorem, (B.1.15) is based on the Markov blanket, (B.1.16) exploits
the conditional independence of class-specific outcomes k+

j and k−j , and
(B.1.17) relies on the model assumptions introduced in (4.3.2) and (4.4.9)
(main text). We can use this result to accept the candidate sample ρ∗j with
probability

min{1, exp(r)}, (B.1.18)

where

r = ln
p̃
(
ρ∗j
∣∣ k+

j , k
−
j , µ

(τ),Σ(τ))
p̃
(
ρ

(τ−1)
j

∣∣∣ k+
j , k

−
j , µ

(τ),Σ(τ)
) (B.1.19)

= lnBin
(
k+
j

∣∣ σ (ρ∗j,1))+ lnBin
(
k−j
∣∣ σ (ρ∗j,2))

+ lnN2

(
ρ∗j

∣∣∣ µ(τ),Σ(τ)
)

− ln Bin
(
k+
j

∣∣∣ σ (ρ(τ−1)
j,1

))
− ln Bin

(
k−j

∣∣∣ σ (ρ(τ−1)
j,2

))
− lnN2

(
ρ

(τ−1)
j

∣∣∣ µ(τ),Σ(τ)
)
. (B.1.20)

We can now obtain samples from the posterior densities p(πj | k+
1:m, k

−
1:m)

for each subject j simply by sigmoid-transforming the current sample,

π
(τ)
j = σ

(
ρ

(τ)
j

)
. (B.1.21)

Based on this, we can obtain samples from the subject-specific balanced
accuracies by setting

φ
(τ)
j := 1

2

(
π

(τ)
j,1 + π

(τ)
j,2

)
. (B.1.22)

Apart from using µ(τ) and Σ(τ) to obtain samples from the posterior distri-
butions over ρj , we can further use the two vectors to draw samples from
the posterior predictive distribution p(π̃+

1:m, k
−
1:m). For this we first draw

ρ̃(τ) ∼ N2

(
ρ̃(τ)

∣∣∣ µ(τ),Σ(τ)
)
, (B.1.23)

and then obtain the desired sample using

π̃(τ) = σ
(
ρ̃(τ)

)
, (B.1.24)
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from which we can obtain samples from the posterior predictive balanced
accuracy using

φ̃(τ) := 1
2

(
π̃

(τ)
1 + π̃

(τ)
2

)
. (B.1.25)

In all above cases, we can use the obtained samples to compute approximate
posterior probability intervals or infraliminal probabilities p.

The approximate expression for the model evidence in (4.4.22) can be
obtained as follows:

ln p(k+
1:m, k

−
1:m |Mnb) (B.1.26)

= ln
∫
p(k+

1:m, k
−
1:m | ρ1:m) p(ρ1:m |Mnb) dρ1:m (B.1.27)

= ln
〈
p(k+

1:m, k
−
1:m | ρ1:m)

〉
ρ1:m

(B.1.28)

= ln
〈

m∏
j

p(k+
j , k

−
j | ρj)

〉
ρ1:m

(B.1.29)

= ln
〈

m∏
j

p
(
k+
j | ρj,1

)
p
(
k−j | ρj,2

)〉
ρ1:m

(B.1.30)

≈ ln 1
c

c∑
τ=1

m∏
j

p
(
k+
j | ρ

(τ)
j,1

)
p
(
k−j | ρ

(τ)
j,2

)
(B.1.31)

= ln 1
c

c∑
τ=1

m∏
j

Bin
(
k+
j

∣∣∣ σ (ρ(τ)
j,1

))
Bin

(
k−j

∣∣∣ σ (ρ(τ)
j,2

))
(B.1.32)

B.2 Bivariate normal prior

In order to illustrate the flexibility offered by the bivariate normal density
on ρ, we derive p(π | µ,Σ) in closed form and then compute the bivariate
density on a two-dimensional grid. We begin by noting that

pπ(π | µ,Σ) = pρ(σ−1(π) | µ,Σ)
∣∣∣∣dσdρ

∣∣∣∣−1
, (B.2.1)
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where we have added indices to pπ and pρ to disambiguate between the two
densities, and where σ−1 denotes the logit transform. The Jacobian is

dσ
dρ =

(
σ′(ρ1) 0

0 σ′(ρ2)

)
, (B.2.2)

in which σ′ represents the first derivative of the sigmoid transform. From
this, we obtain the inverse determinant of the Jacobian as∣∣∣∣dσdρ

∣∣∣∣−1
= 1
σ′(ρ1)σ′(ρ2) . (B.2.3)

Thus, the conditional bivariate density pπ(π | µ,Σ) is given by

pπ(π | µ,Σ) (B.2.4)

= N2
(
σ−1(π)

∣∣ µ,Σ) 1
σ′(σ−1(π1))σ′(σ−1(π2)) (B.2.5)

where σ−1(π) := (σ−1(π1), σ−1(π2))T. When evaluating this density on a
[0, 1]× [0, 1] grid, the normalization constant is no longer needed, and so we
can use the simpler expression

pπ(π | µ,Σ) (B.2.6)

∝ 1
π1 π2 (1− π1)(1− π2)

× exp
{
−1

2
(
σ−1(π)− µ

)T Σ−1 (σ−1(π)− µ
)}

, (B.2.7)

where we have used the fact that σ′(x) = σ(x)(1 − σ(x)). This deriva-
tion allows us to illustrate the degrees of freedom of our family of prior
distributions over µ and Σ (see Figure 4.9).
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Appendix C

Inversion of the univariate
normal-binomial model

C.1 Algorithm for stochastic approximate
inference

Given a set of classification outcomes k ≡ k1:m ≡ (k1, . . . , km), to obtain a
sample from the first posterior of interest, p(µ | k), we draw from the full-
conditional distribution p

(
µ
∣∣ λ(τ−1), ρ(τ−1)). Since the Gaussian prior p(µ)

is conjugate with respect to the likelihood p(ρj | µ, λ), the full-conditional
posterior (i.e., the distribution from which µ(τ) is sampled) is available in
closed form,

µ(τ) ← N
(
µ(τ)

∣∣∣∣ η0

η0 +mλ(τ−1)µ0 + mλ(τ−1)

η0 +mλ(τ−1) ρ̄
(τ−1), η0 +mλ(τ−1)

)
.

(C.1.1)

In the above distribution, µ0 and η0 represent the prior population mean
and precision, λ(τ−1) is the latest sample from the population precision, and
ρ̄(τ−1) is the sample average over the components of the latest samples from
subject-specific accuracies. Thus, as is typical of Bayesian inference, both
moments of the full-conditional distribution embody the balance between
prior precision η0 and data precision mλ(τ−1).

Having drawn a sample from p(µ | k), we next turn to the problem of
sampling from p(λ | k). For this we consider the full-conditional distribution
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p
(
λ
∣∣ µ(τ), ρ(τ−1)). As above, the choice of a conjugate prior yields a closed-

form posterior,

λ(τ) ← Ga

λ(τ)

∣∣∣∣∣∣ a0 + m

2 , b0 + 1
2

m∑
j=1

(
ρ

(τ−1)
j − µ(τ)

)2
 , (C.1.2)

where ρ(τ−1)
j represents the latest sample from the posterior accuracy in

subject j, and where µ(τ) is the sample drawn in (C.1.1).
Finally, to sample from the subject-specific posteriors p(ρj | k), we con-

sider each subject’s full-conditional distribution p(ρj | µ(τ), λ(τ), kj) in turn.
Since a closed-form expression is not available for these distributions, we
embed a Metropolis-Hastings step into our Gibbs sampler. This step can
be implemented by drawing a candidate sample from a (symmetric) proxy
density

ρ∗j ← N
(
ρ∗j

∣∣∣ ρ(τ−1)
j , 22

)
, (C.1.3)

where the choice of variance of the proxy density was guided empirically
to balance exploration and exploitation of the resulting Markov chain (cf.
p. 72 in Section 4.3.3). The sample drawn in (C.1.3) is accepted as the next
ρ

(τ)
j with probability

min

1,
Bin

(
kj
∣∣ σ(ρ∗j ), nj

)
N
(
ρ∗j
∣∣ µ(τ), λ(τ))

Bin
(
kj

∣∣∣ σ (ρ(τ−1)
j

)
, nj

)
N
(
ρ

(τ−1)
j

∣∣∣ µ(τ), λ(τ)
)
 . (C.1.4)

Iterating over all three above steps yields a series of samples (µ(τ), λ(τ), ρ(τ))
whose empirical joint distribution approaches the true posterior p(µ, λ, ρ | k)
in the limit of an infinite number of samples. Unlike VB, which was based
on a mean-field assumption, the posterior obtained through MCMC retains
any potential conditional dependencies among the model parameters. The
algorithm is computationally burdensome; but it can be used to validate the
distributional assumptions underlying variational Bayes (see applications in
Section 4.7).
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Kurzfassung
Multivariate Zeitreihen lassen sich mit Differenzialgleichungen modellie-

ren, die beschreiben, wie die Bestandteile eines unterliegenden dynamischen
Systems zeitlich interagieren. Ein besonders herausforderndes Anwendungs-
feld ist die Neurowissenschaft, in der zunehmend dynamic causal models
verwendet werden, um die Mechanismen hinter multivariaten Zeitreihen von
Hirnaktivität im gesunden und erkrankten menschlichen Gehirn zu beleuch-
ten. Die vorliegende Dissertation stellt einen Ansatz vor, solche Modelle in
klinische Anwendungen zu übertragen, den wir als generative embedding
bezeichnen. Unser Ansatz basiert auf der Idee, dass eine mechanistisch in-
terpretierbare Beschreibung eines Systems wesentlich bessere Einsichten er-
möglicht als die beobachteten Zeitreihen selbst. Konzeptionell beginnen wir
mit der Entwicklung eines Verfahrens zur modellbasierten Klassifikation;
es beruht auf der Kombination eines generativen Modells mit einem dis-
kriminativen Klassifikator. Wir zeigen, dass dieser Ansatz signifikant ge-
nauere diagnostische Klassifikationen und tiefere mechanistische Einsichten
ermöglicht als bisherige Methoden. Die Verwendung eines Klassifikationsal-
gorithmus auf hierarchichen Daten erfordert neue Antworten auf die Frage
nach dessen statistischer Evaluation. Wir führen Bayesianische Modelle ein,
die die verschiedenen Quellen von Variabilität richtig zueinander in Be-
zug setzen, um optimale statistische Inferenz zu ermöglichen. Wir schlagen
vor, die konventionelle Klassifikationsgenauigkeit durch die sog. balancier-
te Genauigkeit zu ersetzen, wenn die Daten nicht selbst balanciert sind.
Wir veranschaulichen die Eigenschaften unserer Modelle anhand von sto-
chastischer approximativer Inferenz auf der Basis von Markov chain Monte
Carlo. Wir leiten anschließend mittels Bayes’scher Variationsrechnung eine
hocheffiziente deterministische Näherung her. Komplementär zur Anwen-
dung in der Klassifikation ermöglicht generative embedding die Entdeckung
mechanistisch interpretierbarer, a priori unbekannter Untergruppen. Wir
entwickeln ein Verfahren zum modellbasierten Clustering, mit dem wir eine
Gruppe von Schizophrenie-Patienten in Untergruppen mit klinischer Vali-
dität zerlegen. Zusammengefasst erkundet die vorliegende Dissertation mit
generative embedding und Bayes’scher Inferenz die konzeptionellen, statis-
tischen, und rechnerischen Grundlagen für den Einsatz von modellbasier-
ten Klassifikations- und Clustering-Verfahren im klinischen Kontext. Wir
erwarten, dass zukünftige Anwendungen unserer Methodik es ermöglichen
werden, Gruppen von Patienten mit ähnlichen Symptomen in sich patho-
physiologisch unterscheidende Untergruppen aufzuspalten.
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