
5 Functional Results 
• For the brain activity analyses, we examined the representation of trial-wise precision-

weighted prediction errors (pwPE) and of prediction errors (PE). Trial-by-trial estimates of 
pwPE and PE were generated for each subject by the hierarchical Bayesian learning model.  

• For the SSA learning task, the statistical parametric maps of the pwPE showed significant 
activation (p<0.05 cluster-level corrected across the whole brain, voxel-level threshold p < 
0.01) in the right medial and inferior prefrontal cortex. (a). For the SRA learning task the 
significant activation (p<0.05 cluster-level corrected across the whole brain, voxel-level 
threshold p < 0.01) was located in bilateral superior prefrontal cortex, right medial 
prefrontal cortex and ACC, and in the right orbitofrontal cortex (b). 

• Prediction errors in the SSA learning task were found to be represented in/near the basal 
forebrain (c; uncorrected, p < 0.01) and visual areas, such as fusiform gyrus. A similar 
activation pattern was found for prediction errors during the SRA learning task (d; 
uncorrected, p < 0.01). 
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1     Summary  
• Synaptic plasticity is critical for reconfiguration of neuronal circuits during normal 

learning and development [1] but also for pathological learning and disorders. Although 
numerous studies in various species have investigated different forms of learning, we still 
lack a precise understanding of the differences in physiological and computational 
mechanisms involved and particularly of the relative importance of different modulatory 
transmitters. 

• Learning is driven by prediction errors. Dopamine has been found to play a crucial rule in 
prediction errors related to reward[2], whereas ACh might play a crucial role for synaptic 
plasticity during perceptual and reward learning.  

• Using computational modeling and two different learning tasks, a stimulus-stimulus 
association (SSA) learning task and a stimulus-reward association (SRA) learning task, we 
conducted a behavioral and an fMRI-study to investigate relevant neural circuits and 
potential mechanisms of neuromodulation.  

• Here we present preliminary behavioral and fMRI results. The main activation for 
precision-weighted prediction errors was found to be represented in prefrontal areas. 
Prediction errors were mainly represented in/ near the basal forebrain. 

• Further analyses will include models of effective connectivity and genetic analyses to 
characterize putative dopaminergic and cholinergic mechanisms involved in these 
learning forms.  

4 Behavioral Results 
In both studies, reaction times (RT) and performance (% correct responses) did not show a 
significant difference between both learning tasks  (behavioral: RT: t(46) = -0.16, p>0.05; %CR: 
t(46) = 1.21, p>0.05; fMRI: RT: t(36) = 0.36, p>0.05; %CR: t(36) = 1.26, p>0.05). Also, no significant 
differences between both learning tasks were found for the three model parameters ϑ 
(behavioral: t(46) = -0.55, p>0.05; fMRI: t(36) = 0.21, p>0.05), κ (behavioral: t(46) = 0.83, p>0.05; 
fMRI: t(36) = 0.93, p>0.05), and ω (behavioral: t(46) = 1.34, p>0.05; fMRI: t(36) = -1.29, p>0.05). 
Furthermore, the parameters did not significantly differ, when comparing them between the 
behavioural and the fMRI study (ϑ: t(82) = -0.62, p>0.05; κ: t(82) = 1.36, p>0.05; ω: t(82) = -1.09, 
p>0.05).  

 

3 Modelling  

6 Discussion 
Precision-weighted prediction errors, i.e. the value of prediction errors, were found to be 
mainly represented in pre- and orbitofrontal areas, both for SSA and SRA learning. Responses 
in prefrontal cortex have been previously related to unpredictable and surprising stimuli[4], i.e. 
when uncertainty plays a critical role. In particular, medial prefrontal cortex (MFC) has been 
suggested to be important in cognitive control and performance adjustments. Therefore, one 
may speculate that MFC alters processing in neural circuits implementing perception and 
behavior according to the precision of prediction errors. This will be examined in future 
analyses using DCM. In both tasks, prediction errors elicited activation near/in the basal 
forebrain. This region, which contains cholinergic nuclei and is close to dopaminergically 
innervated  regions (i.e., Nucl. accumbens), has previously been implicated in reward 
processing.[2]  

These preliminary results, that we obtained by a Bayesian learning model that predicted the 
agent’s trial-by-trial beliefs about the environment, will be completed by additional subjects 
(measured, but not yet analyzed), genetic analyses of SNPs related to DA and ACh, and 
connectivity analyses using DCM. In particular, we aim to quantify the ‚hidden‛ 
neurophysiological mechanisms that affect synaptic plasticity and shape different learning 
forms.  By combining computational models, models of effective connectivity, and genetic 
information, we hope to better characterize the role of different neurotransmitters, such as 
dopamine and acetylcholine, for different forms of learning.  

2     Experimental paradigm 

Participants (behavioral study: 47; fMRI study: 34) engaged in both studies in two learning 
tasks; in a stimulus-stimulus association (SSA) and in a stimulus-reward association (SRA) 
task. Both tasks required continuous learning of probabilistic, time-varying associations 
between cues and targets. The perceptual input was identical in both tasks, but the task was 
different. In the SSA learning task, participants had to predict the visual stimulus (face or 
house), given the auditory stimulus (high or low tone). In the SRA learning task, participants 
had to predict the monetary value (indicated by superimposed coins, 5 francs or 0.05 francs) 
that appeared randomly in one of the 4 edges, given the auditory stimulus (high or low 
tones).  

 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

Literature 
[1] Gu, Q. (2002). Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience, 111(4), 815-835.  
[2] Schultz, W. (2010). Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct, 6, 24. 
[3] Matthys, C., Daunizeau, J., Friston, K., & Stephan, K.E. A Bayesian foundation for individual learning under uncertainty. Front. Hum. 

Neurosci. 5:39. 
[4] Fletcher, P. C., Anderson, J. M., Shanks, D. R., Honey, R., Carpenter, T. A., Donovan, T., et al. (2001). Responses of human frontal cortex to 

surprising events are predicted by formal associative learning theory. [Research Support, Non-U.S. Gov't]. Nature neuroscience, 4(10), 
1043-1048. 

  

 

Bayesian learning models prescribe an 
optimal way how agents learn under 
uncertainty, and they provide trial-wise 
prediction error estimates that can inform 
models of synaptic plasticity. However, they 
are computationally too complex for real-
time learning and therefore biologically 
unrealistic.  
We have developed an extremely efficient 
variational approximation to ideal Bayesian 
learning; this allows for inference on an 
agent‘s belief about causal relations 
between stimuli in a changing world.  

The participant is taken to receive a sequence of inputs u(1), u(2),... (the associated pairs of 
cues and targets). It uses these to make inferences on a hierarchy of hidden states x1, x2,... of 
its environment. While x1 is binary, all higher states are continuous. Continuous states 
change by performing Gaussian random walks that are hierarchically coupled (one state’s 
step size is determined by the next higher state). 

In this model with two coupled random walks, the nature of learning is determined by three 
parameters ϑ, κ, and ω. These parameters can be estimated from behavioral data.  

ϑ is the step size of the random walk in x3. Reducing it leads to little learning in x3 due to 
agent’s small uncertainty about x3’s true value. ω regulates the step size in x2. Reducing it 
leads to little learning primarily in x2 and secondarily in x3 since this, representing the log-
volatility in x2, cannot change much if x2 remains stable. κ determines how strongly x2 and 
x3 are coupled. Small κ diminishes learning in x3 despite great uncertainty while learning in 
x2 remains largely unaffected.  

Furthermore, we derive trial-by-trial update equations, which describe the agents update of 
its beliefs about the environment, and which contain i.a. parameters that, analogous to 
reinforcement learning models, represent prediction errors and precision-weighted 
prediction errors[3].  

Prediction error             = 𝜇1
𝑘

− 𝑠 𝜇2
𝑘−1

 ;             p(𝜇2
(k)) ~ N(𝜇2

(k-1), exp(κx3 + ω)) 

Precision-weighted prediction error     = 𝜎2
(𝑘)
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𝑘−1
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Probabilities were only transiently 
stable (range: 24 to 40 trials), changing 
pseudorandomly between strong 
(p=0.9, 0.1), moderate (p=0.7, 0.3) and  
no association (p=0.5). 


