
5 Multiple forms of uncertainty: perceptual 
and decision noise 

Inferring the individual nature of Bayesian learning 
under multiple forms of uncertainty 

2 The generative model: a hierarchy of 
Gaussian random walks 

An agent is taken to receive a sequence of inputs u(1), u(2),... It uses these to 
make inferences on a hierarchy of hidden states x1, x2,... of its environment. 
While x1 is binary, all higher states are continuous. Continuous states change 
by performing Gaussian random walks that are hierarchically coupled with 
one state’s step size determined by the next highest state. 
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3 A novel variational inversion leads to 
closed-form update equations based on 
learning rate and prediction error 

We invert the generative model variationally using a mean field 
approximation and a novel quadratic approximation to the variational 
energy that defines the posteriors of the continuous states. This permits us 
to derive closed-form Markovian update equations for the posterior 
expectations of all states. These update equations are structurally similar to 
those of reinforcement learning. 

 

1 Introduction 
Probability theory formally prescribes an optimal way for learning about the 
environment from sensory information: sequential updating of beliefs 
according to Bayes’ theorem. This principle can be extended to hierarchical 
Bayesian models when dealing with higher-order uncertainty induced by the 
time-varying structure of the environment. While optimal from the 
perspective of probability theory, Bayesian belief updating requires 
evaluating complicated integrals which are not tractable analytically and 
difficult to evaluate in real time. Recently, however, theoretical advances 
have enabled computationally efficient approximations to exact Bayesian 
inference during learning. Here, we focus on a recent derivation of 
reinforcement learning from Bayesian principles [1] which rests on a 
generative hierarchical model of the environment and its (in)stability. This 
model (i) provides analytic and computationally highly efficient update 
equations, (ii) allows for on-line estimates of the model’s states and 
parameters and (iii) includes a mechanism for time-varying encoding of the 
precision of beliefs which may correspond to the modulatory effects of 
dopamine as proposed by [2]. Here, we combine this perceptual model with 
a model for subjects’ responses, such that decisions are informed by current 
beliefs about the state of the world. 
1. Mathys, C., et al. (2011). A Bayesian foundation for individual learning under uncertainty. Front. Hum. Neurosci., 5: 39. 
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Fig. 2 | Comparison of new variational inversion to inversion by MCMC sampling. Top 
and middle: Variational approximation (solid colored line) stays within 10-90 percentile 
range of samples (shaded areas) at both 2nd and 3rd levels. Bottom: Belief that next x1 
(green) will be 1 corresponds closely in approximation (red) and sampling (black) 
 

4 The response model 

 

Fig. 3 | Perceptual input and decision output. (A) Distribution of perceptual input 
in simulations of Section 5. Top: low noise (α=0.001; cf. orange dots in Fig. 4A). 
Bottom: high noise (α=0.1; cf. orange dots in Fig. 4B). According to the perceptual 
generative model, input is generated from a mixture of Gaussians with arbitrary 
means, here 0 and 1. (B) “Softmax” decision rule for different levels of decision 
noise. The abscissa measures the posterior probability (sigmoid s(μ2) of tendency 
μ2) that the next input indicates a hidden state of type 1; the ordinate measures 
the probability of a decision y=1 predicting a hidden state of type 1. The higher the 
noise, the flatter the curve (i.e., the less the decision reflects the current belief). 
The curve’s shape is determined by the parameter ζ. Purple: ζ=64 (used in Fig. 4A); 
red: ζ=6; cyan: ζ=1 (used in Fig. 4B); olive: ζ=0.5.  
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Fig. 4 | Simulation examples. Black: hidden true state, orange: perceptual input; green: 
belief on probability of true state = 1; red: belief on tendency of true state; blue: belief 
on volatility of tendency; violet: decision. (A) low noise. (B) high noise. 
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6 Parameter estimation and application to 
behavioral data 

Fig. 5 | Parameter estimation example. 10’000 simulation runs generating 640 binary 
decisions (cf. Fig. 4) were completed under the same parameter setting, with moderate 
perceptual noise (α=0.01) and weak decision noise (ζ=64). Maximum-a-posteriori 
parameter estimates were then made for every simulation run. In all panels, the orange 
line represents the value the decisions  were generated with.  

Fig. 6 | Application to behavioral data. Owing to an assumed absence of perceptual 
noise (unambiguous cues and outcomes), the hidden true state, perceptual input, and 
belief on probability of true state = 1, are all equal (green); other elements are as in Fig. 
4. (A) Healthy control subject. (B) Prodromal schizophrenic patient. Note that while, 
superficially, the patient shows similar learning and decision-making to the control (red 
lines and violet dots), more subtle differences appear at a higher level (blue lines) and in 
the parameter estimates. 
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7 Conclusions 
We have provided face validity of our Bayesian model for individual learning 
under uncertainty, showing that parameter estimates can be recovered 
under simultaneous perceptual and decisional uncertainty. The application 
to behavioral data has demonstrated the potential of our approach for 
detecting subtle individual differences in learning that would escape 
conventional analyses. 

Fig. 1 | The generative model. The parameters κ, ω, and ϑ determine the way the 
agent sees its environment.  
 

Parameter 
estimates:  
κ = 0.61 

ω = -1.97 
ϑ = 1.12 

Parameter 
estimates:  
κ = 0.33 

ω = -3.00 
ϑ = 0.38 


