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When do we need approximate inference? 

 How to evaluate the posterior distribution of the model parameters? 

𝑝 𝜃 𝒴 =
𝑝 𝒴 𝜃 𝑝 𝜃

𝑝 𝒴
=

1

𝑍
 𝑝 𝒴 𝜃 𝑝 𝜃  

 

 How to compute the evidence term? 

𝑝 𝒴 = ∫ 𝑝 𝒴 𝜃 𝑝 𝜃  𝑑𝜃 = E𝜃 𝑝 𝒴 𝜃   

 

 How to compute the expectation of the posterior? 

𝐸 𝜃 𝒴 = ∫ 𝜃 𝑝 𝜃 𝒴 𝑑𝜃  

 

 

 How to make a point prediction? 

∫ 𝑦 𝑝 𝑦 𝒴  𝑑𝑦 = E 𝑦 𝒴   

sample from an arbitrary distribution 

compute an expectation 

compute an expectation 

compute an expectation 
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Deterministic approximations 
through structural assumptions 

 
 application often requires mathematical 

derivations (hard work) 

 systematic error 

 computationally efficient 

 efficient representation 

 learning rules may give additional insight 

Which type of approximate inference? 

Stochastic approximations 
through sampling 

 
 computationally expensive 

 storage intensive 

 asymptotically exact 

 easily applicable general-purpose 
algorithms 
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Themes in stochastic approximate inference 

Sampling from a desired target distribution 
we need to find a way of drawing random numbers from some target distribution 𝑝(𝑧) 
 
 
 
 
 
 
 
 
 
 
 
 
Computing an expectation w.r.t. that target distribution 
we can approximate the expectation of 𝑧 using the sample mean: 

𝐸 𝑧 ≈
1

𝑇
 𝑧 𝜏  𝑇

𝜏=1   

p
(z

)
f(

z)

z 

z 

𝐸,𝑧- 

𝑧 1 = 0.201 
𝑧 2 = 1.807 

⋮ 
𝑧 10,000 = 0.870 

sampling 

summary 



Transformation method 1 
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 Idea: we can obtain samples from some distribution 𝑝 𝑧  by first sampling from  
the uniform distribution and then transforming these samples. 

Transformation method for sampling from 𝑝(𝑧) 
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 Algorithm for sampling from 𝑝(𝑧) 

 Draw a random number from the uniform distribution: 

𝑢 𝜏 ~𝑈 0,1   

 Transform 𝑢 by applying the inverse cumulative density function (cdf) of the 
desired target distribution: 

𝑧 𝜏 = 𝐹−1 𝑢 𝜏   

 Repeat both steps for 𝜏 = 1…𝑇. 

 

Transformation method: algorithm 
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 Example: sampling from the exponential distribution 

 The desired pdf is: 𝑝 𝑧|𝜆 = 𝜆 exp(−𝜆𝑧) 

 The corresponding cdf is: 𝐹 𝑧 = 1 − exp −𝜆𝑧  

 The inverse cdf is: 𝐹−1 𝑢 = −
1

𝜆
ln 1 − 𝑢  

 Thus, 𝑧 𝜏 = −
1

𝜆
ln 1 − 𝑢 𝜏  is a sample from the exponential distribution. 

 

 Implementation in MATLAB 

for t=1:10000 

    z(t) = -1/lambda*log(1-rand); 

end 

hist(z) 

mean(z) 

 

Transformation method: example 
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 Discussion 

 yields high-quality samples 

 easy to implement 

 computationally efficient 

 obtaining the inverse cdf can be difficult 

Transformation method: summary 



Rejection sampling 
and importance sampling 

2 
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 Idea: when the transformation method cannot be applied, we can resort to a 
more general method called rejection sampling. Here, we draw random numbers 
from a simpler proposal distribution 𝑞(𝑧) and keep only some of these samples. 

Rejection sampling 

The proposal distribution 𝑞(𝑧), 
scaled by a factor 𝑘, represents 
an envelope of 𝑝(𝑧). 
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 Algorithm for sampling from 𝑝(𝑧) 

 Sample 𝑧0 from 𝑞(𝑧) 

 Sample 𝑢0 from 𝑈(0,1) 

 If 𝑢0 ≤ 𝑝(𝑧0)/𝑘𝑞 𝑧0 , then accept the sample: 

𝑧 𝜏 = 𝑧0  

 Otherwise, discard 𝑧0 and 𝑢0. 

 Repeat until we have obtained 𝑇 accepted samples. 

Rejection sampling: algorithm 
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 Idea: if our goal is to compute the expectation 𝐸,𝑧-, we can outperform rejection 
sampling by bypassing the generationg of random samples. 

 

 Naïve approach 

 A naïve approach would be to approximate the expectation as follows. Rather than 
sampling from 𝑝(𝑧), we discretize 𝑧-space into a uniform grid and evaluate: 

𝔼 𝑧 ≈  𝑝(𝑧 𝑙 )

𝐿

𝑙=1

𝑧(𝑙) 

 There are two problems with this approach: 

 The number of terms in the summation grows exponentially with the dimensionality of 𝑧. 

 Only a small proportion of the samples will make a significant contribution to the sum. 
Uniform sampling clearly is very inefficient. 

 

Importance sampling 
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 Addressing the two problems of the naive approach above, given a proposal 
distribution 𝑞(𝑧), we can approximate the expectation as 

𝔼 𝑧 = ∫ 𝑧 𝑝 𝑧 𝑑𝑧 =  𝑧
𝑝 𝑧

𝑞 𝑧
𝑞 𝑧 𝑑𝑧 ≈

1

𝐿
 

𝑝 𝑧 𝑙

𝑞 𝑧 𝑙
𝑧 𝑙

𝐿

𝑙=1

 

where the samples 𝑧(𝑙) are drawn from 𝑞. 

 

 The quantities 𝑟𝑙 =
𝑝 𝑧(𝑙)

𝑞 𝑧(𝑙)  are known as importance weights, and they correct the 

bias introduced by sampling from the wrong distribution. 

 

 Unlike in the case of rejection sampling, all of the generated samples are 
retained. 

Importance sampling 



Markov Chain Monte Carlo 3 
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 Idea: we can sample from a large class of distributions and overcome the 
problems that previous methods face in high dimensions using a framework 
called Markov Chain Monte Carlo. 

Markov Chain Monte Carlo (MCMC) 
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 A first-order Markov chain is defined as a series of random variables 𝑧 1 , … , 𝑧 𝑀  
such the following conditional-independence property holds: 

𝑝 𝑧 𝑚+1 𝑧 1 , … , 𝑧 𝑚 = 𝑝 𝑧 𝑚+1 𝑧 𝑚   

 

 Thus, the graphical model of a Markov chain is a chain: 

 

 

 

 

 A Markov chain is specified in terms of 

 the initial probability distribution 𝑝 𝑧 0  

 the transition probabilities 𝑝 𝑧 𝑚+1 𝑧 𝑚  

Background on Markov chains 

𝑧 1  𝑧 2  𝑧 3  𝑧 𝑀  … 
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Background on Markov chains 
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𝑧 

𝑝(𝑧) 

Equlibrium distribution Markov chain: state diagram 
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Background on Markov chains 

1 

2 

3 

1 2 3 

𝑧 

𝑝(𝑧) 

Equlibrium distribution Markov chain: state diagram 
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The idea behind MCMC 
p

(z
)

f(
z)

z 

z 
2 4 6 8 1 3 5 7 

Empirical distribution of samples 

Desired target distribution 

Markov chain whose 
equilibrium distribution is 
𝑝(𝑧) 
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 Algorithm for sampling from 𝑝(𝑧) 

 Initialize by drawing 𝑧(1) somehow. 

 At cycle 𝜏 + 1, draw a candidate sample 𝑧∗ from 𝑞 𝑧 𝑧 𝜏 . 

Importantly, 𝑞 needs to be symmetric, i.e., 𝑞 𝑧1 𝑧2 = 𝑞 𝑧2 𝑧1 . 

 Accept 𝑧(𝜏+1) ← 𝑧∗ with probability 

𝐴 𝑧∗, 𝑧 𝜏 = min 1,
𝑝(𝑧∗)

𝑝(𝑧 𝜏 )
= min 1,

𝑝 (𝑧∗)

𝑝 (𝑧 𝜏 )
, 

and otherwise set 𝑧(𝜏+1) ← 𝑧(𝜏).  

 

 Notes 

 In contrast to rejection sampling, each cycle leads to a new sample, even 
when the candidate 𝑧∗ is discarded. 

 Note that the sequence 𝑧 1 , 𝑧 2 , … is not a set of independent samples from 
𝑝(𝑧) because successive samples are highly correlated. 

Metropolis algorithm 
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 Algorithm for sampling from 𝑝(𝑧) 

 Initialize by drawing 𝑧(1) somehow. 

 At cycle 𝜏 + 1, draw a candidate sample 𝑧∗ from 𝑞(𝑧|𝑧 𝜏 ). 
In contrast to the Metropolis algorithm (see previous slide), 𝑞 no longer needs 
to be symmetric. 

 Accept 𝑧(𝜏+1) ← 𝑧∗ with probability 

𝐴 𝑧∗, 𝑧 𝜏 = min 1,
𝑝 𝑧∗ 𝑞𝑘 𝑧 𝜏 𝑧∗

𝑝 (𝑧 𝜏 𝑞𝑘(𝑧
∗|𝑧 𝜏 , 

and otherwise set 𝑧(𝜏+1) ← 𝑧(𝜏). 

Metropolis-Hastings algorithm 
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Metropolis: accept or reject? 

Inrease in density: 

Decrease in density: 

p(z*) 
p(zτ) 

p(zτ) 

p(z*) 

zτ 

zτ 

z* 

z* 

1

)(~
*)(~




zp

zp
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 Idea: as an alternative to the Metropolis-Hastings algorithm, Gibbs sampling is 
less broadly applicable but does away with acceptance tests and can therefore be 
more efficient. 

 Suppose we wish to sample from a multivariate distribution 𝑝 𝑧 = 𝑝(𝑧1, … , 𝑧𝑀), 
e.g., representing several variables in a model. For example, we might be 
interested in their joint posterior distribution. 

 In Gibbs sampling, we update one component at a time. 

Gibbs sampling 
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 Algorithm for sampling from 𝑝(𝑧) 

 Initialize *𝑧𝑖: 𝑖 = 1, … ,𝑀+ somehow. 

 At cycle 𝜏 + 1, sample 𝑧𝑖
𝜏
~𝑝 𝑧𝑖 𝑧\𝑖

𝜏
, i.e., replace the 𝑖𝑡ℎ variable by a new sample, 

drawn from a distribution that is conditioned of the current values of all other 
variables. The resulting new vector is our new sample. 

 In the next cycle, replace a different variable 𝑖. The simplest procedure is to go round 
𝑖 = 1, … ,𝑀, 1, … ,𝑀,… Alternatively, 𝑖 could be chosen randomly. 

 

Gibbs sampling 
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 Throughout Bayesian statistics, we encounter intractable problems. 
Most of these problems are: (i) evaluating a distribution; or (ii) 
computing the expectation of a distribution. 

 Sampling methods provide a stochastic alternative to deterministic 
methods. They are usually computationally less efficient, but are 
asymptotically correct, broadly applicable, and easy to implement. 

 We looked at three main approaches: 

 Transformation method: efficient sampling from simple distributions 

 Rejection sampling and importance sampling: sampling from arbitrary 
distributions; direct computation of an expected value 

 Monte Carlo Markov Chain (MCMC): efficient sampling from high-dimensional 
distributions through the Metropolis-Hastings algorithm or Gibbs sampling 

Summary 


