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When do we need approximate inference?

o How to evaluate the posterior distribution of the model parameters?
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p(OY) = p(y) |z p(Y16)p(8) sample from an arbitrary distribution

o How to compute the evidence term?
p(Y) = [ p(Y10)p(6) A6 = Eg[p(YI1OD] | = e an expectation

o How to compute the expectation of the posterior?
E[6|Y] = | 6 p(61Y)d6

compute an expectation

o How to make a point prediction?

]y p(y1Y) dy =|E[y|Y]

compute an expectation




Which type of approximate inference?

Deterministic approximations Stochastic approximations
through structural assumptions through sampling

© application often requires mathematical © computationally expensive
derivations (hard work) O storage intensive

© systematic error ® asymptotically exact

® computationally efficient @ easily applicable general-purpose

@ efficient representation algorithms

@ learning rules may give additional insight




Themes in stochastic approximate inference

Sampling from a desired target distribution
we need to find a way of drawing random numbers from some target distribution p(z)
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Computing an expectation w.r.t. that target distribution
we can approximate the expectation of z using the sample mean:




Transformation method



Transformation method for sampling from p(z)

o ldea: we can obtain samples from some distribution p(z) by first sampling from
the uniform distribution and then transforming these samples.

1.4~
1.2
1 L.
08" N
= =
S 06- =
0.4-
0.2
u=20.9
O -
0 0.5 1 3 4

transformation




Transformation method: algorithm

o Algorithm for sampling from p(2)
m Draw a random number from the uniform distribution:
u@~U(0,1)
m Transform u by applying the inverse cumulative density function (cdf) of the
desired target distribution:

70 — F—l(u(r))
m Repeat both stepsfort =1...T.




Transformation method: example

o Example: sampling from the exponential distribution
m The desired pdfis: p(z|1) = Aexp(—A12)
m The corresponding cdf is: F(z) = 1 — exp(—A12)

m Theinverse cdfis: F~1(u) = —%ln(l —u)

s Thus, z(W = —%ln(l — u(T)) is a sample from the exponential distribution.

o Implementation in MATLAB
for t=1:10000
z(t) = -1/lambda*log(l-rand);
end
hist (z)

mean (z)




Transformation method: summary

o Discussion
@ yields high-quality samples
@ easy to implement
@ computationally efficient

© obtaining the inverse cdf can be difficult




2 | Rejection sampling
and importance sampling




Rejection sampling

Idea: when the transformation method cannot be applied, we can resort to a
more general method called rejection sampling. Here, we draw random numbers
from a simpler proposal distribution q(z) and keep only some of these samples.

kq(z) <€ The proposal distribution q(z),
scaled by a factor k, represents
an envelope of p(z).

kq(zo)
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Rejection sampling: algorithm

o Algorithm for sampling from p(2)

Sample z, from q(2)
Sample uy from U(0,1)

If uy < p(zy)/kq(zy), then accept the sample:
z® =z,

Otherwise, discard zy and u.

Repeat until we have obtained T accepted samples.
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Importance sampling

o Idea: if our goal is to compute the expectation E[z], we can outperform rejection
sampling by bypassing the generationg of random samples.

o Naive approach

m A naive approach would be to approximate the expectation as follows. Rather than
sampling from p(z), we discretize z-space into a uniform grid and evaluate:

L
Elz] ~ ) p(z®) z®
=1

m There are two problems with this approach:
= The number of terms in the summation grows exponentially with the dimensionality of z.

= Only a small proportion of the samples will make a significant contribution to the sum.
Uniform sampling clearly is very inefficient.
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Importance sampling

o Addressing the two problems of the naive approach above, given a proposal
distribution q(z), we can approximate the expectation as

L
p(2) 1 p(zW)
[E[Z] = pr(Z)dZ = jzﬁq(z)dz ~ Z; q(Z(l)) Z(l)

where the samples z() are drawn from gq.

Q)
o The quantitiesr; = Zg@% are known as importance weights, and they correct the

bias introduced by sampling from the wrong distribution.

o Unlike in the case of rejection sampling, all of the generated samples are
retained.
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Markov Chain Monte Carlo




Markov Chain Monte Carlo (MCMC)

Idea: we can sample from a large class of distributions and overcome the
problems that previous methods face in high dimensions using a framework
called Markov Chain Monte Carlo.
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Background on Markov chains

o A first-order Markov chain is defined as a series of random variables z(l), e z(M)
such the following conditional-independence property holds:

p(zmV|z(D), . 2] = p(z(m+D)|z(m)

o Thus, the graphical model of a Markov chain is a chain:

o A Markov chain is specified in terms of
= the initial probability distribution p(z(®)

m the transition probabilities p(z(m+1)|z(m))
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Background on Markov chains

Markov chain: state diagram Equlibrium distribution
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Background on Markov chains

Markov chain: state diagram Equlibrium distribution

9 p(z)
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The idea behind MCMC

_Desired target distribution

p(2)

"Empirical distribution of samples

f(2)

ww - equilibrium distribution is

Markov chain whose

p(z)
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Metropolis algorithm

o Algorithm for sampling from p(2)
= Initialize by drawing z(1) somehow.

m Atcycle T+ 1, draw a candidate sample z* from q(le(T)).
Importantly, g needs to be symmetric, i.e., q(z1]|2z,) = q(z,|z).

s Accept zTtD « z* with probability

. : (z%) : 5(Z")
A(z ,Z(T)) = min (1,%) = min (1,%),

and otherwise set z(*t1D) « (D,

o Notes

m In contrast to rejection sampling, each cycle leads to a new sample, even
when the candidate z* is discarded.

m Note that the sequence z1) 7@ isnot a set of independent samples from
p(z) because successive samples are highly correlated.
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Metropolis-Hastings algorithm

o Algorithm for sampling from p(2)
= Initialize by drawing z(1) somehow.

= Atcycle T + 1, draw a candidate sample z* from q(z|z(™).
In contrast to the Metropolis algorithm (see previous slide), g no longer needs

to be symmetric.

s Accept zTtD « z* with probability
* (MY = mi ﬁ(z*)Qk(Z(’)lz*))
A(z*,zP) = min (1, 5D (2120 )’
and otherwise set z(T* 1) « z(D,
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Metropolis: accept or reject?

Inrease in density:

Decrease in density:

p(z*)
p(z")
a=1
7T Z* Zz
p(ZY)
p(z*) 0 E(Z,)
p(z°)

>

¢ z* z
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Gibbs sampling

o l|dea: as an alternative to the Metropolis-Hastings algorithm, Gibbs sampling is
less broadly applicable but does away with acceptance tests and can therefore be
more efficient.

o Suppose we wish to sample from a multivariate distribution p(z) = p(z4, ..., Zy),
e.g., representing several variables in a model. For example, we might be
interested in their joint posterior distribution.

o In Gibbs sampling, we update one component at a time.

2
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Zs Zs Zs
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Gibbs sampling

o Algorithm for sampling from p(2)
m Initialize {z;:i = 1, ..., M} somehow.

m Atcyclet + 1, sample zi(T)~p (zi z\(l.T)), i.e., replace the it" variable by a new sample,

drawn from a distribution that is conditioned of the current values of all other
variables. The resulting new vector is our new sample.

m In the next cycle, replace a different variable i. The simplest procedure is to go round
i=1,..,M,1, ..., M, ... Alternatively, i could be chosen randomly.
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Summary

o Throughout Bayesian statistics, we encounter intractable problems.
Most of these problems are: (i) evaluating a distribution; or (ii)
computing the expectation of a distribution.

o Sampling methods provide a stochastic alternative to deterministic
methods. They are usually computationally less efficient, but are
asymptotically correct, broadly applicable, and easy to implement.

o We looked at three main approaches:

m Transformation method: efficient sampling from simple distributions

m Rejection sampling and importance sampling: sampling from arbitrary
distributions; direct computation of an expected value

m Monte Carlo Markov Chain (MCMC): efficient sampling from high-dimensional
distributions through the Metropolis-Hastings algorithm or Gibbs sampling
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