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When do we need approximate inference? 

 How to evaluate the posterior distribution of the model parameters? 

𝑝 𝜃 𝒴 =
𝑝 𝒴 𝜃 𝑝 𝜃

𝑝 𝒴
=

1

𝑍
 𝑝 𝒴 𝜃 𝑝 𝜃  

 

 How to compute the evidence term? 

𝑝 𝒴 = ∫ 𝑝 𝒴 𝜃 𝑝 𝜃  𝑑𝜃 = E𝜃 𝑝 𝒴 𝜃   

 

 How to compute the expectation of the posterior? 

𝐸 𝜃 𝒴 = ∫ 𝜃 𝑝 𝜃 𝒴 𝑑𝜃  

 

 

 How to make a point prediction? 

∫ 𝑦 𝑝 𝑦 𝒴  𝑑𝑦 = E 𝑦 𝒴   

sample from an arbitrary distribution 

compute an expectation 

compute an expectation 

compute an expectation 
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Deterministic approximations 
through structural assumptions 

 
 application often requires mathematical 

derivations (hard work) 

 systematic error 

 computationally efficient 

 efficient representation 

 learning rules may give additional insight 

Which type of approximate inference? 

Stochastic approximations 
through sampling 

 
 computationally expensive 

 storage intensive 

 asymptotically exact 

 easily applicable general-purpose 
algorithms 
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Themes in stochastic approximate inference 

Sampling from a desired target distribution 
we need to find a way of drawing random numbers from some target distribution 𝑝(𝑧) 
 
 
 
 
 
 
 
 
 
 
 
 
Computing an expectation w.r.t. that target distribution 
we can approximate the expectation of 𝑧 using the sample mean: 

𝐸 𝑧 ≈
1

𝑇
 𝑧 𝜏  𝑇

𝜏=1   

p
(z

)
f(

z)

z 

z 

𝐸,𝑧- 

𝑧 1 = 0.201 
𝑧 2 = 1.807 

⋮ 
𝑧 10,000 = 0.870 

sampling 

summary 



Transformation method 1 
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 Idea: we can obtain samples from some distribution 𝑝 𝑧  by first sampling from  
the uniform distribution and then transforming these samples. 

Transformation method for sampling from 𝑝(𝑧) 
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 Algorithm for sampling from 𝑝(𝑧) 

 Draw a random number from the uniform distribution: 

𝑢 𝜏 ~𝑈 0,1   

 Transform 𝑢 by applying the inverse cumulative density function (cdf) of the 
desired target distribution: 

𝑧 𝜏 = 𝐹−1 𝑢 𝜏   

 Repeat both steps for 𝜏 = 1…𝑇. 

 

Transformation method: algorithm 
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 Example: sampling from the exponential distribution 

 The desired pdf is: 𝑝 𝑧|𝜆 = 𝜆 exp(−𝜆𝑧) 

 The corresponding cdf is: 𝐹 𝑧 = 1 − exp −𝜆𝑧  

 The inverse cdf is: 𝐹−1 𝑢 = −
1

𝜆
ln 1 − 𝑢  

 Thus, 𝑧 𝜏 = −
1

𝜆
ln 1 − 𝑢 𝜏  is a sample from the exponential distribution. 

 

 Implementation in MATLAB 

for t=1:10000 

    z(t) = -1/lambda*log(1-rand); 

end 

hist(z) 

mean(z) 

 

Transformation method: example 
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 Discussion 

 yields high-quality samples 

 easy to implement 

 computationally efficient 

 obtaining the inverse cdf can be difficult 

Transformation method: summary 



Rejection sampling 
and importance sampling 

2 
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 Idea: when the transformation method cannot be applied, we can resort to a 
more general method called rejection sampling. Here, we draw random numbers 
from a simpler proposal distribution 𝑞(𝑧) and keep only some of these samples. 

Rejection sampling 

The proposal distribution 𝑞(𝑧), 
scaled by a factor 𝑘, represents 
an envelope of 𝑝(𝑧). 
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 Algorithm for sampling from 𝑝(𝑧) 

 Sample 𝑧0 from 𝑞(𝑧) 

 Sample 𝑢0 from 𝑈(0,1) 

 If 𝑢0 ≤ 𝑝(𝑧0)/𝑘𝑞 𝑧0 , then accept the sample: 

𝑧 𝜏 = 𝑧0  

 Otherwise, discard 𝑧0 and 𝑢0. 

 Repeat until we have obtained 𝑇 accepted samples. 

Rejection sampling: algorithm 



13 

 Idea: if our goal is to compute the expectation 𝐸,𝑧-, we can outperform rejection 
sampling by bypassing the generationg of random samples. 

 

 Naïve approach 

 A naïve approach would be to approximate the expectation as follows. Rather than 
sampling from 𝑝(𝑧), we discretize 𝑧-space into a uniform grid and evaluate: 

𝔼 𝑧 ≈  𝑝(𝑧 𝑙 )

𝐿

𝑙=1

𝑧(𝑙) 

 There are two problems with this approach: 

 The number of terms in the summation grows exponentially with the dimensionality of 𝑧. 

 Only a small proportion of the samples will make a significant contribution to the sum. 
Uniform sampling clearly is very inefficient. 

 

Importance sampling 
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 Addressing the two problems of the naive approach above, given a proposal 
distribution 𝑞(𝑧), we can approximate the expectation as 

𝔼 𝑧 = ∫ 𝑧 𝑝 𝑧 𝑑𝑧 =  𝑧
𝑝 𝑧

𝑞 𝑧
𝑞 𝑧 𝑑𝑧 ≈

1

𝐿
 

𝑝 𝑧 𝑙

𝑞 𝑧 𝑙
𝑧 𝑙

𝐿

𝑙=1

 

where the samples 𝑧(𝑙) are drawn from 𝑞. 

 

 The quantities 𝑟𝑙 =
𝑝 𝑧(𝑙)

𝑞 𝑧(𝑙)  are known as importance weights, and they correct the 

bias introduced by sampling from the wrong distribution. 

 

 Unlike in the case of rejection sampling, all of the generated samples are 
retained. 

Importance sampling 



Markov Chain Monte Carlo 3 
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 Idea: we can sample from a large class of distributions and overcome the 
problems that previous methods face in high dimensions using a framework 
called Markov Chain Monte Carlo. 

Markov Chain Monte Carlo (MCMC) 
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 A first-order Markov chain is defined as a series of random variables 𝑧 1 , … , 𝑧 𝑀  
such the following conditional-independence property holds: 

𝑝 𝑧 𝑚+1 𝑧 1 , … , 𝑧 𝑚 = 𝑝 𝑧 𝑚+1 𝑧 𝑚   

 

 Thus, the graphical model of a Markov chain is a chain: 

 

 

 

 

 A Markov chain is specified in terms of 

 the initial probability distribution 𝑝 𝑧 0  

 the transition probabilities 𝑝 𝑧 𝑚+1 𝑧 𝑚  

Background on Markov chains 

𝑧 1  𝑧 2  𝑧 3  𝑧 𝑀  … 
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Background on Markov chains 

1 

2 

3 

1 2 3 

𝑧 

𝑝(𝑧) 

Equlibrium distribution Markov chain: state diagram 
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Background on Markov chains 

1 

2 

3 

1 2 3 

𝑧 

𝑝(𝑧) 

Equlibrium distribution Markov chain: state diagram 
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The idea behind MCMC 
p

(z
)

f(
z)

z 

z 
2 4 6 8 1 3 5 7 

Empirical distribution of samples 

Desired target distribution 

Markov chain whose 
equilibrium distribution is 
𝑝(𝑧) 
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 Algorithm for sampling from 𝑝(𝑧) 

 Initialize by drawing 𝑧(1) somehow. 

 At cycle 𝜏 + 1, draw a candidate sample 𝑧∗ from 𝑞 𝑧 𝑧 𝜏 . 

Importantly, 𝑞 needs to be symmetric, i.e., 𝑞 𝑧1 𝑧2 = 𝑞 𝑧2 𝑧1 . 

 Accept 𝑧(𝜏+1) ← 𝑧∗ with probability 

𝐴 𝑧∗, 𝑧 𝜏 = min 1,
𝑝(𝑧∗)

𝑝(𝑧 𝜏 )
= min 1,

𝑝 (𝑧∗)

𝑝 (𝑧 𝜏 )
, 

and otherwise set 𝑧(𝜏+1) ← 𝑧(𝜏).  

 

 Notes 

 In contrast to rejection sampling, each cycle leads to a new sample, even 
when the candidate 𝑧∗ is discarded. 

 Note that the sequence 𝑧 1 , 𝑧 2 , … is not a set of independent samples from 
𝑝(𝑧) because successive samples are highly correlated. 

Metropolis algorithm 
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 Algorithm for sampling from 𝑝(𝑧) 

 Initialize by drawing 𝑧(1) somehow. 

 At cycle 𝜏 + 1, draw a candidate sample 𝑧∗ from 𝑞(𝑧|𝑧 𝜏 ). 
In contrast to the Metropolis algorithm (see previous slide), 𝑞 no longer needs 
to be symmetric. 

 Accept 𝑧(𝜏+1) ← 𝑧∗ with probability 

𝐴 𝑧∗, 𝑧 𝜏 = min 1,
𝑝 𝑧∗ 𝑞𝑘 𝑧 𝜏 𝑧∗

𝑝 (𝑧 𝜏 𝑞𝑘(𝑧
∗|𝑧 𝜏 , 

and otherwise set 𝑧(𝜏+1) ← 𝑧(𝜏). 

Metropolis-Hastings algorithm 
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Metropolis: accept or reject? 

Inrease in density: 

Decrease in density: 

p(z*) 
p(zτ) 

p(zτ) 

p(z*) 

zτ 

zτ 

z* 

z* 

1

)(~
*)(~




zp
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
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 Idea: as an alternative to the Metropolis-Hastings algorithm, Gibbs sampling is 
less broadly applicable but does away with acceptance tests and can therefore be 
more efficient. 

 Suppose we wish to sample from a multivariate distribution 𝑝 𝑧 = 𝑝(𝑧1, … , 𝑧𝑀), 
e.g., representing several variables in a model. For example, we might be 
interested in their joint posterior distribution. 

 In Gibbs sampling, we update one component at a time. 

Gibbs sampling 
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 Algorithm for sampling from 𝑝(𝑧) 

 Initialize *𝑧𝑖: 𝑖 = 1, … ,𝑀+ somehow. 

 At cycle 𝜏 + 1, sample 𝑧𝑖
𝜏
~𝑝 𝑧𝑖 𝑧\𝑖

𝜏
, i.e., replace the 𝑖𝑡ℎ variable by a new sample, 

drawn from a distribution that is conditioned of the current values of all other 
variables. The resulting new vector is our new sample. 

 In the next cycle, replace a different variable 𝑖. The simplest procedure is to go round 
𝑖 = 1, … ,𝑀, 1, … ,𝑀,… Alternatively, 𝑖 could be chosen randomly. 

 

Gibbs sampling 
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 Throughout Bayesian statistics, we encounter intractable problems. 
Most of these problems are: (i) evaluating a distribution; or (ii) 
computing the expectation of a distribution. 

 Sampling methods provide a stochastic alternative to deterministic 
methods. They are usually computationally less efficient, but are 
asymptotically correct, broadly applicable, and easy to implement. 

 We looked at three main approaches: 

 Transformation method: efficient sampling from simple distributions 

 Rejection sampling and importance sampling: sampling from arbitrary 
distributions; direct computation of an expected value 

 Monte Carlo Markov Chain (MCMC): efficient sampling from high-dimensional 
distributions through the Metropolis-Hastings algorithm or Gibbs sampling 

Summary 


