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Why multivariate?

Multivariate approaches simultaneously consider brain activity in many locations.

PET Hidden1 Hidden2  Hidden 3

47 0
46 +0.063 &
pi; To087 g
44 ™
43

V5

Py

40

I 0047

3 07 :
37

35 o
35

33

3

2z +0.066

0 40119

29

33 w0 o
S5 +0.129  +0.069 prediction
2 10062 400102

5 30110

5 ~0.004

2

51 0070 -00%6

50 0167 001

19 007 0062

00D

17

16

5 0054

i +0.089

2 011 :
11

10 -
9 0125 0119

B 40301 +02u0 &

7 10:106 3

6 40058 e,

e pii8 5

3 8

3 o2

2 w005 &

§ 3

Haxby et al. (2001) Science Lautrup et al. (1994) Supercomputing in Brain Research




Why multivariate?

Multivariate approaches can utilize information jointly encoded in multiple voxels.
This is because multivariate distance meausures can account for correlations
between voxels.




Why multivariate?

Multivariate approaches can exploit a sampling bias in voxelized images
to reveal interesting activity on a subvoxel scale.
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Boynton (2005) Nature Neuroscience




Why multivariate?

Multivariate approaches can utilize ‘hidden’ quantities such as coupling strengths.
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Modelling terminology

a Encoding vs. decoding

An encoding model (or generative model) relates context to brain activity.

A decoding model (or recognition model) relates brain activity to context.

encoding model

condition giX, > Y,

stimulus
response

decoding model

h:Yt _)Xt

context BOLD signal
X, € R4 Y, € RY




Modelling terminology

@ Prediction vs. inference

The goal of prediction is to find
a highly accurate encoding or
decoding function.

Brain Cross-Sections

Sulcus \ ( . \ Sul

fentri
> W\l
Langlia A b language

Memory)
L} 2 N

Normal Alzheimer's

predicting a cognitive predicting a
state using a subject-specific
brain-machine interface diagnostic status

predictive density

D (Xnew | Ynew, X, Y) = f P Xnew|Ynew, 0)p(0|X,Y)d6

lcus
Gyms\\; -~ t ( 1// Gyrus

The goal of inference is to decide
between competing hypotheses about
structure-function mappings in the brain.

weighing the
evidence for sparse
coding vs. dense

comparing a model that
links distributed neuronal
activity to a cognitive state
with a model that does not coding

marginal likelihood
p(XIY) = [ p(X|Y,0)p(6)d6




Modelling terminology

© Univariate vs. multivariate

A univariate model considers a A multivariate model considers
single voxel at a time. many voxels at once. |
= §§)
/ ‘1 ‘/." > J - 1
context BOLD signal context BOLD signal
X, € R4 Y, ER X, € R4 Y, € RY
The implicit likelihood of the data factorizes Multivariate models relax the assumption
over voxels, p(Y;1X;) = [TV=1 p(Y2.i|X¢e)- about independence of voxels.
Spatial dependencies between voxels are They enable inference about distributed
introduced afterwards, through random field responses without requiring focal
theory. This enables multivariate inferences activations or certain topological response
over voxels (i.e., cluster-level or set-level features. They can therefore be more
inference). powerful than univariate analyses.
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Modelling terminology

@ Regression vs. classification

In a regression model, the dependent variable is continuous.

In a classification model, the dependent variable is categorical (e.g., binary).
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Summary of modelling terminology

context label from brain activity hypotheses

Classification Multivariate Bayes (MVB)
based on multivariate decoding multivariate encoding model for
° models for predicting a categorical comparing alternative coding o

12



Outline

2 Classification
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Constructing a classifier

In classification, we aim to predict a target variable X from data Y,

Most classifiers are designed to estimate the unknown probabilities of an example
belonging to a particular class:

h:Yt _)Xt S {1, ,K}

h(Y;) = argm}gxp(Xt = kl|Y;, X,Y)

Generative classifiers

use Bayes’ rule to estimate
p(X¢|Y:) < p(Ye|X)p(X:)

Gaussian Naive Bayes
Linear Discriminant Analysis

A

Discriminative classifiers

estimate p(X,|Y;) directly
without Bayes’ theorem

Logistic regression
Relevance Vector Machine

Discriminant classifiers

estimate h(Y;) directly

Support Vector Machine
Fisher’s Linear Discriminant
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Support vector machines

The support vector machine (SVM) is a
discriminant classifier.

* Training — Find a hyperplane with a maximal
margin to the nearest examples on either side.

* Test — Assign a new example to the class
corresponding to its side of the plane.

SVMs are used in many domains of application.
* Efficiency — SVMs are fast and easy to use.

* Performance — SVMs usually perform well
compared to other classifiers.

* Flexibility — The need for vectorial representations
of examples is replaced by a similarity measure,

defined via a kernel function k(Yi, Y])

Vapnik (1999) Springer; Scholkopf et al. (2002) MIT Press

Linear SVM
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Generalizability of a classifier

Typically, we have many more voxels than observations. This means that there are

infinitely many models that enable perfect classification of the available data. But
these models might have overfit the data.

Overfitting is usually not an issue in GLM analyses, where the number
of regressors is much smaller than the number of observations.

We want to find a classification model h: Y — X that generalizes well to new data.
Given some training data, we might consider the probability

p (h(y(test)) _ X(test)|y(train), X(train))_

However, this quantity is dependent on the training data. So instead we should
consider the generalizability

Etraining [ p (h(y(test)) _ X(test)‘y(train), X(train))],

which we can approximate using cross-validation.
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Cross-validation

Cross-validation is a resampling procedure that can be used to estimate the
generalizability of a classifier.

ExamIO'ei . . . . Training examples
5 . . . . Test example
3 | @ 8 @
99 = 7 [
100
1 99 | | 100 | Folds

Tutorial
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Trial-by-trial classification of fMRI data

B

. 0 .
Train: learning a mapping Y (train)__—_, x(train)
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Target questions in classification studies

e N e
A Overall classification accuracy B Spatial deployment of informative regions
Accuracy [%]
100 %
—
-
50% | -p------- - -
Truth
or
lie?
Classification task
\. V, \.
e N '
C Temporal evolution of informativeness D Characterization of distributed activity
Accuracy [%] Participant indicates Inferring a representational space and
100 % declision extrapolation to novel classes
I o
O
O
50 % © @)
O
Accuracy rises O
above chance ) O
Mitchell et al. (2008) s
Intra-trial time Science
| A \

Pereira et al. (2009) Neurolmage, Brodersen et al. (2009) The New Collection




Preprocessing for classification

The most principled approach is to deconvolve the BOLD signal using a GLM.
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trial-by-trial design matrix
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trials and trial phases

This approach results in one beta image per trial and phase.




Performance evaluation

population
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Performance evaluation

¥ Single-subject study

The most common approach is to assess how likely the obtained number of correctly
classified trials could have occurred by chance.

p =P(X = k|Hy) = 1— B(k|n,m))

p  probability of observing the obtained performance by
chance

k  number of correctly classified trials
n  total number of trials

Ty probability of getting a single result right by chance
B binomial cumulative density function

In publications, this approach is referred to as a binomial test.

It is based on the assumption that, under the Null hypothesis, the classifier produces
random predictions.
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Performance evaluation

$X¢ Group study

The most common approach is to assess the probability with which the observed subject-wise
sample accuracies were sampled from a distribution with a mean equal to chance.

. T—T
L= ‘/mam_l
\p: 1 —ty_1(0) )
p probability of observing the obtained performance by chance
m number of subjects
T sample mean of subject-wise sample accuracies
0m—1 Sample standard deviation of subject-wise sample accuracies
o probability of getting a single result right by chance
tm—1 cumulative Student’s t-distribution with m — 1 d.o.f.

This approach represents a random-effects analysis of classification outcomes based on the
additional assumption that the mean of sample accuracies is approximately Normal.
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Common limitations in performance evaluation

@ No mixed-effects inference.
@ Maximum-likelihood estimation.

€ Restriction to accuracies.

Tutorial

Brodersen, Ong, Buhmann & Stephan (2010) /CPR
Brodersen, Chumbley, Mathys, Daunizeau, Ong, Buhmann & Stephan (in preparation)
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Spatial deployment of informative voxels

I
L

Approach 1 — Consider the entire brain, and find out which
voxels are jointly discriminative.

o based on a classifier with a constraint on sparseness in features
Hampton & O’Doherty (2007); Grosenick et al. (2008, 2009)

o based on Gaussian Processes
Marquand et al. (2010) Neurolmage; Lomakina et al. (in preparation)

Approach 2 — At each voxel, consider a small local
environment, and compute a discriminability score.

o based ona CCA
Nandy & Cordes (2003) Magn. Reson. Med.

o based on a classifier
o based on Euclidean distances

o based on Mahalanobis distances
Kriegeskorte et al. (2006, 2007a, 2007b)
Serences & Boynton (2007) J Neuroscience

o based on the mutual information
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Temporal evolution of discriminability

Example — decoding which button the subject pressed

classification
accuracy

75

motor cortex

Al

50 t¥
Y-8 14/0 4]

decision response

frontopolar cortex

Soon et al. (2008) Nature Neuroscience
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Pattern characterization

Example — decoding the identity of

the person speaking to the subject in
the scanner

HE®

fingerprint plot
(one plot per class)

Formisano et al. (2008) Science
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Issues to be aware of (as researcher or reviewer)

o Classification induces constraints on the experimental design.
m When estimating trial-wise Beta values, we need longer ITls (typically 8 — 15 s).
m At the same time, we need many trials (typically 100+).

m Classes should be balanced. If they are imbalanced, we can resample the training set,
constrain the classifier, or report the balanced accuracy.

o Construction of examples

m Estimation of Beta images is the preferred approach.

m Covariates should be included in the trial-by-trial design matrix.
o Temporal autocorrelation

m In trial-by-trial classification, exclude trials around the test trial from the training set.
o Avoiding double-dipping

m Any feature selection and tuning of classifier settings should be carried out on the
training set only.

o Performance evaluation

m Correct for multiple tests.
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Multivariate Bayes

Multivariate analyses in SPM are not framed in terms of classification
problems. Instead, SPM brings multivariate analyses into the conventional
inference framework of hierarchical models and their inversion.

Multivariate Bayes (MVB) can be used to address two questions:

Is there a link between X and Y? What is the form of the link between X and Y?
* using cross-validation (as seen * smooth or sparse coding?

earlier) (many voxels vs. few voxels)
* using model comparison (new) e category-specific representations that are

functionally selective or functionally
segregated?

30



Conventional inference framework

Classical encoding model Bayesian decoding model
X asacauseof Y X as a consequence of Y

g(0): X >V h(8):Y — X
Y =TXB+Gy+¢

Friston et al. (2008) Neurolmage
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Lessons from the Neyman-Pearson lemma

Is there a link between X and Y?

To test for a statistical dependency
between a contextual variable X and the
BOLD signal Y, we compare

o Hj: there is no dependency

o H,:thereis some dependency

Which statistical test?

1. define a test size a
(the probability of falsely rejecting
H,, i.e., 1 — specificity),

2. choose the test with the highest
power1—pf
(the probability of correctly rejecting
H,, i.e., sensitivity).

The Neyman-Pearson lemma

The most powerful test of size « is:
to reject Hy when the likelihood ratio A exceeds
a criticial value u,

p(Y|X) _pXI|Y) -
p(Y) p(X) —

with u chosen such that

P(A(Y) = ulH,) = a.

AY) =

The null distribution of the likelihood ratio
p(A(Y)|Hy) can be determined non-
parametrically or under parametric assumptions.

This lemma underlies both classical statistics and
Bayesian statistics (where A(Y) is known as a
Bayes factor).

Neyman & Person (1933) Phil Trans Roy Soc London
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Lessons from the Neyman-Pearson lemma

In summary

1. Inference about how the brain represents
context variables reduces to model
comparison.

2. To establish that a link exists between some
context X and activity Y, the direction of the
mapping is not important.

3. Testing the accuracy of a classifier is not
based on A is therefore suboptimal.

Neyman & Person (1933) Phil Trans Roy Soc London
Kass & Raftery (1995) J Am Stat Assoc
Friston et al. (2009) Neurolmage
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Priors help to regularize the inference problem

Mapping brain activity onto a context variable is ill-posed: there is an infinite
number of equally likely solutions. We therefore require constraints (priors) to
estimate the voxel weights f3.

SPM comes with several alternative coding hypotheses, specified in terms of spatial
priors on voxel weights, p(ﬁ), after transformations ¥ = YU and B = pU.

Nul: U=

Spatial vectors: U = |

Smooth vectors: U()?i,ij) =exp(—3 (X — Xj)ZG_Z)
Singular vectors: UDV' = RY '
Support vectors: |J = RY '

Friston et al. (2008) Neurolmage
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Multivariate Bayes: example

o MVB can be illustrated using SPM’s attention-to-motion example dataset.

Buechel & Friston 1999 Cerebral Cortex
Friston et al. 2008 Neurolmage

design matrix

o This dataset is based on a simple block design.
Each block is a combination of some of the
following three factors:

o photic — there is some visual stimulus
O motion —there is motion
O attention —subjects are paying attention

o We form a design matrix by convolving box-car
functions with a canonical haemodynamic
. blocks of
response function. 10 scans

photic
motion
attention

constant



Multivariate Bayes: example

oupy | ety | e b
et o] i s

After having specified and estimated
a design, we use the Results button.

FAH rypel rame

Next, we select the contrast of interest.
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Multivariate Bayes: example

Eile

Edit  View |Insert Toaols

SPM8 (kbroders): Graphics

Deskiop

Window  5PM Figure

motionF

SPMresults: «oroderssstuiessatterispms
Height threzhold F = 14 538676 {p=0.03 (FWE)}
Extent threshold k = 0 voxels

Help

contrast(s)

al
100
150
200
24l
300

3a0

i 4
Design matrix

6

We place the cursor onto
the region of interest.
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Multivariate Bayes: example

SPM8/(kbreders): SPM{F}: Results SPMS8 (kbroders): SPM{F}: Resulis — | |3l |3

~Design  Comrasts Design  Contrasts ™

r ‘f |1' Wk 31',..

.-—E
curencolusir] _multveriate Bayes | overays.,
smallvolume | 5| g | sme |

_vemosynarmes | star] ext] ]

Multivariate Bayes can be invoked from co-ordinates statistic
within the Multivariate section. )0

We specify the region of interest as a sphere
around the cursor. We examine the sparse coding
hypothesis.




Multivariate Bayes: example

7 'SPM8 (kbroders): SPM{F): Results

HEL

Design  Contrasts
name motionF
sphere radius {mm) 1&
sparsa
size of successive subdivisions 0.5
Cready search steps g
whole brain J eigenvari..J A, J plot J

currant cIusterJ

multivariate Bayes J overlays... -

smallvolumeJ B IS J p-walueJ

save J

Hemodynamics J

clear| exit | J

x=[ BN v=[ -93.00 z=[ o0.00

38.29

To display results, we use the button for

Bayesian model selection (BMS).

a SPM8!(kbroders): Multivariate Bayes B
File  Edit View Insert Tools Desktop Window 5PM Figure Help El
log-evidence

maKimum p = 100.00%

distribution of weights

400
00 b
=
o
=
g 200 et
=
z
a0 e
Y : - : 0
123 45 67 89 -0og -0 0 0m 0.0z
partitions waoxelweight
Fosteriar probabilities at maxima
FPPM: MVE_motionF (motionF) P
pifw] = 03 location (xy,2) weight ()
p=0837 30,-800-150mm g=-0.016%;
p=0531 -30-99.09.0nm q=-00130;
B k'l p=0974 -60,-930,60mm q=-001589;
p=0968 6.0,-102.0-3.0mm q=-0.0147;
p = 0965 12.0,-930-60mm g =-0.0175
p=0564 B.0,-87.0-120mm q=00166
p=0361 0.0,-36.060mm q=00152
p=0343 B.0-810-90mm q=-00143;
& p=0.947 -30,-950-30mm g = 0.0135;
iy p=08537 0.0,-87.0120mm o=-00144;
p=0337 3.0,-78.030mm q=00131;
p=0933 9.0,-960-30mm q=00133;
489 voxels; 360 scans
MYB_motionF observed and predicted contrast
(prior: sparse) SMR {variance) 0.57
0.5 04
target
prediction
@ f 0.z
£ 0
= :
4 =
: g o
1 o
k] =
2 05
3
= ozhe
-1 i i i 04 i
100 200 3on 400 -1 -0.5 1} 05

LAk

contrast
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Multivariate Bayes: example

MVB-based predictions closely match the observed responses. But crucially, they don’t
perfectly match them. Perfect match would indicate overfitting.

MVB_sparse (prior: sparse)

farget

predicton

__________________

adjusted response (motion)

___________________________________

Y SRS 1A NS H— .

-0.8 | I i
0 100 200 300 400

SCans
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Multivariate Bayes: example

The weights attributed to each voxel in the sphere are sparse and multimodal.

This suggests sparse coding.

log-evidence
max imum p = 100.00%

O 71—

P S N N B

parifions

idence =3

frequency

600

500

400

(3]
(=]
(=]

200

100

0
-0

: : :
.03 -0.02  -0.01 0 0.01

distribution of weights

voxel-weight

0.02
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Multivariate Bayes: example

MVB may outperform conventional point classifiers when using a more appropriate

coding hypothesis.

percent correct

70

68t

66 |

64

62}

Classification performance

] T T L] T L T L) L)

MVB (sparse vectors)

A

MVB (support vectors)

1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8
C-hyperparameter (SVM)
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Recall: challenges for multivariate approaches

o Model selection Q Neurobiological
interpretability

Given tens of thousands of

voxels and very few trials of How can we obtain results that
data, how do we find those are mechanistically

brain regions that are jointly interpretable in the context of

informative of some variable of the underlying neurobiological

interest? system?
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Approach

|dentification / inferring a representational space

1. estimation of an encoding model
2. nearest-neighbour classification or voting

Predictive model

stimulus
word —»
“celery”

predicted
—— activity for
“celery”

Intermediate
semantic features
extracted from
trillion-word text
corpus

Mapping learned
from fMRI
training data

Mitchell et al. (2008) Science
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Reconstruction / optimal decoding

Approach
1. estimation of an encoding model
2. model inversion

Coupled spiking model
Stimulus Stochastic

njefjujrjojn
filter Nonlinearity spiking

=it o 1 =] o fr] 2
v ki K3 K5 el K

Couping T Rl 5 8 1 S
— 3 @i IHEHEJEHH
Tam Rad I i O 2

Pillow et al. (2008) Nature Miyawaki et al. (2009) Neuron

Neuron 1

Neuron 2




Generative embedding for fMRI

stepl — @ step2 — ' A>B
kernel construction

model inversion
| > j \, f') | > A>C
—

B->8B

X — Mo ° Mg — R?
k:RYxRT = R B>C
p(8|z,m) ‘ T : R4
kam s Mo x Mg — R
measurements subject-specific subject representation in the
from an individual inverted generative model generative score space
subject -
0.4
@ step 4 — o N step 3 —
j \ f-) interpretation 02} classification
<
() A

n
A A ERR ) *
0%2 035 03 025 02 ¢ = sgll (Z @; k(.’E%, ZIZ‘) +b )
i

jointly discriminative separating hyperplane
connection strengths fitted to discriminate
between groups

Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (2010) Neurolmage
Brodersen, Schofield, Leff, Ong, Lomakina, Buhmann, Stephan (under review)
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Summary

1. Foundations. Multivariate methods can uncover and exploit information
jointly encoded by multiple voxels. Remember the distinction between
prediction and inference, encoding and decoding, univariate and
multivariate, and classification and regression.

2. Classification. Classification studies typically aim to examine (i) overall
discriminability, (ii) the spatial deployment of informative regions, (iii) the
temporal evolution of discriminative activity, and (iv) the nature of the
distributed activity.

3. Multivariate Bayes. Multivariate Bayes offers an alternative scheme that
maps multivariate patterns of activity onto brain states within the
conventional statistical framework of hierarchical models and their inversion.

4. Model-based approaches. Model-based approaches aim to augment
previous methods by neurobiological interpretability and are likely to
become very fruitful in the future.
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