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Multivariate approaches simultaneously consider brain activity in many locations. 

Why multivariate? 

Haxby et al. (2001) Science Lautrup et al. (1994) Supercomputing in Brain Research 

PET 

prediction 
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Multivariate approaches can utilize information jointly encoded in multiple voxels. 
This is because multivariate distance meausures can account for correlations 
between voxels. 

Why multivariate? 
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Multivariate approaches can exploit a sampling bias in voxelized images 
to reveal interesting activity on a subvoxel scale. 

Why multivariate? 

Boynton (2005) Nature Neuroscience  



5 

Multivariate approaches can utilize ‘hidden’ quantities such as coupling strengths. 

Why multivariate? 
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Modelling terminology 

context
𝑋𝑡 ∈ ℝ𝑑 

BOLD signal 
𝑌𝑡 ∈ ℝ𝑣  

Encoding vs. decoding 

 
An encoding model (or generative model) relates context to brain activity. 

A decoding model (or recognition model) relates brain activity to context. 

1 

  condition 
        stimulus 
response 

encoding model 

decoding model 

𝑔:𝑋𝑡 → 𝑌𝑡 

ℎ: 𝑌𝑡 → 𝑋𝑡 
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Modelling terminology 

Prediction vs. inference 2 

The goal of prediction is to find 
a highly accurate encoding or 
decoding function. 

The goal of inference is to decide 
between competing hypotheses about 
structure-function mappings in the brain. 

predicting a cognitive 
state using a 

brain-machine interface 

predicting a 
subject-specific 

diagnostic status 

predictive density 

𝑝 𝑋𝑛𝑒𝑤 𝑌𝑛𝑒𝑤 , 𝑋, 𝑌 = ∫ 𝑝 𝑋𝑛𝑒𝑤 𝑌𝑛𝑒𝑤 , 𝜃 𝑝 𝜃 𝑋, 𝑌 𝑑𝜃 

marginal likelihood 

𝑝 𝑋 𝑌 = ∫ 𝑝 𝑋 𝑌, 𝜃 𝑝 𝜃 𝑑𝜃 

comparing a model that 
links distributed neuronal 

activity to a cognitive state 
with a model that does not 

weighing the 
evidence for sparse 

coding vs. dense 
coding 
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Modelling terminology 

Univariate vs. multivariate 3 

BOLD signal 
𝑌𝑡 ∈ ℝ𝑣  

context 
𝑋𝑡 ∈ ℝ𝑑  

A univariate model considers a 
single voxel at a time. 

A multivariate model considers 
many voxels at once. 

The implicit likelihood of the data factorizes 

over voxels, 𝑝 𝑌𝑡 𝑋𝑡 =  𝑝 𝑌𝑡,𝑖 𝑋𝑡
𝑣
𝑖=1 . 

Spatial dependencies between voxels are 
introduced afterwards, through random field 
theory. This enables multivariate inferences 
over voxels (i.e., cluster-level or set-level 
inference). 

BOLD signal 
𝑌𝑡 ∈ ℝ 

context 
𝑋𝑡 ∈ ℝ𝑑  

Multivariate models relax the assumption 
about independence of voxels. 

They enable inference about distributed 
responses without requiring focal 
activations or certain topological response 
features. They can therefore be more 
powerful than univariate analyses. 
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Modelling terminology 

Regression vs. classification 4 

In a regression model, the dependent variable is continuous. 

In a classification model, the dependent variable is categorical (e.g., binary). 
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Summary of modelling terminology 

General Linear Model (GLM) 

mass-univariate encoding model for 
regressing context onto brain 
activity and inferring on topological 
response features 

Classification 

based on multivariate decoding 
models for predicting a categorical 
context label from brain activity 

Multivariate Bayes (MVB) 

multivariate encoding model for 
comparing alternative coding 
hypotheses 

Dynamic Causal Modelling (DCM) 

multivariate encoding model for 
comparing alternative connectivity 
hypotheses 

… … 



13 

Outline 

1 Foundations 

2 Classification 

3 Multivariate Bayes 

4 Further model-based approaches 



14 

In classification, we aim to predict a target variable 𝑋 from data 𝑌, 

ℎ: 𝑌𝑡 → 𝑋𝑡 ∈ 1,… , 𝐾  

Most classifiers are designed to estimate the unknown probabilities of an example 
belonging to a particular class: 

ℎ 𝑌𝑡 = argmax
𝑘

𝑝 𝑋𝑡 = 𝑘 𝑌𝑡, 𝑋, 𝑌  

Constructing a classifier 

Generative classifiers 

use Bayes’ rule to estimate 
𝑝 𝑋𝑡 𝑌𝑡 ∝ 𝑝 𝑌𝑡 𝑋𝑡 𝑝 𝑋𝑡  

Gaussian Naïve Bayes 
Linear Discriminant Analysis 

Discriminative classifiers 

estimate 𝑝 𝑋𝑡 𝑌𝑡  directly 
without Bayes’ theorem 

Logistic regression 
Relevance Vector Machine 

Discriminant classifiers 

estimate ℎ 𝑌𝑡  directly 
 

Support Vector Machine 
Fisher’s Linear Discriminant 
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Support vector machines 

The support vector machine (SVM) is a 
discriminant classifier. 

• Training – Find  a hyperplane with a maximal 
margin to the nearest examples on either side. 

• Test – Assign a new example to the class 
corresponding to its side of the plane. 

 

SVMs are used in many domains of application. 

• Efficiency – SVMs are fast and easy to use. 

• Performance – SVMs usually perform well 
compared to other classifiers. 

• Flexibility – The need for vectorial representations 
of examples is replaced by a similarity measure, 

defined via a kernel function 𝑘 𝑌𝑖 , 𝑌𝑗 . 

Vapnik (1999) Springer; Schölkopf et al. (2002) MIT Press 

Linear SVM 

Nonlinear SVM 

𝑏 

𝒘 
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Typically, we have many more voxels than observations. This means that there are 
infinitely many models that enable perfect classification of the available data. But 
these models might have overfit the data. 

Overfitting is usually not an issue in GLM analyses, where the number 
of regressors is much smaller than the number of observations. 

We want to find a classification model ℎ: 𝑌 → 𝑋 that generalizes well to new data. 
Given some training data, we might consider the probability 

𝑃 ℎ 𝑌 test = 𝑋 test 𝑌 train , 𝑋 train . 

However, this quantity is dependent on the training data. So instead we should 
consider the generalizability 

𝐸training 𝑃 ℎ 𝑌 test = 𝑋 test 𝑌 train , 𝑋 train , 

which we can approximate using cross-validation. 

Generalizability of a classifier 
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Cross-validation is a resampling procedure that can be used to estimate the 
generalizability of a classifier. 

Cross-validation 

Examples 
1 

2 

3 

99 

100 

Training examples 

Test example 

... 

1 

... 

2 

... 

3 
... 

99 

... 

100 

... 

Folds 

Tutorial 
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Trial-by-trial classification of fMRI data 

Train: learning a mapping  𝑌 train      𝜃      
𝑋 train  

A A B A B A A B A A A B A 

? ? ? 

Accuracy 
estimate 

[% correct] 

Feature 
extraction 

Feature 
selection 

Classification 

3 

1 

2 

Trials 

V
o

xels 

e.g., voxels 

𝑌 train   

𝑋 train   

𝑌 test   

Test: apply the 
learned mapping 

fMRI 
timeseries 
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Target questions in classification studies 

C    Temporal evolution of informativeness D    Characterization of distributed activity 

Accuracy [%] 

50 % 

100 % 

Intra-trial time 

Accuracy rises 
above chance 

Participant indicates 
decision 

A    Overall classification accuracy B    Spatial deployment of informative regions 

80% 

55% 

Accuracy [%] 

50 % 

100 % 

Classification task 

Truth 
or 

lie? 

Left or 
right 

button? 

Inferring a representational space and 
extrapolation to novel classes 

Healthy 
or 

diseased? 

Pereira et al. (2009) NeuroImage, Brodersen et al. (2009) The New Collection 

Mitchell et al. (2008) 
Science 
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The most principled approach is to deconvolve the BOLD signal using a GLM. 

Preprocessing for classification 
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This approach results in one beta image per trial and phase. 
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Performance evaluation 

subject 1 
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     Single-subject study 

The most common approach is to assess how likely the obtained number of correctly 
classified trials could have occurred by chance. 
 

 

 

 

 

 

 

 
 

In publications, this approach is referred to as a binomial test. 

It is based on the assumption that, under the Null hypothesis, the classifier produces 
random predictions. 

Performance evaluation 

𝑝 probability of observing the obtained performance by 
chance 

𝑘 number of correctly classified trials 
𝑛 total number of trials 
𝜋0 probability of getting a single result right by chance 
𝐵 binomial cumulative density function 

𝑝 = 𝑃 𝑋 ≥ 𝑘 𝐻0 = 1 − 𝐵 𝑘|𝑛, 𝜋0   
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           Group study 

The most common approach is to assess the probability with which the observed subject-wise 
sample accuracies were sampled from a distribution with a mean equal to chance. 

 

 

 

 

 

 

 

 

 
This approach represents a random-effects analysis of classification outcomes based on the 
additional assumption that the mean of sample accuracies is approximately Normal. 

Performance evaluation 

𝑝 probability of observing the obtained performance by chance 
𝑚 number of subjects 
𝜋  sample mean of subject-wise sample accuracies 
𝜎 𝑚−1 sample standard deviation of subject-wise sample accuracies 
𝜋0 probability of getting a single result right by chance 
𝑡𝑚−1 cumulative Student’s 𝑡-distribution with 𝑚 − 1 d.o.f. 

𝑡 = 𝑚
𝜋 −𝜋0

𝜎 𝑚−1
  

𝑝 = 1 − 𝑡𝑚−1 𝑡   
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Common limitations in performance evaluation 

❶ No mixed-effects inference. 

 

❷ Maximum-likelihood estimation. 

 

❸ Restriction to accuracies. 

Brodersen, Ong, Buhmann & Stephan (2010) ICPR 
Brodersen, Chumbley, Mathys, Daunizeau, Ong, Buhmann & Stephan (in preparation) 

Tutorial 
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Spatial deployment of informative voxels 

Approach 1 – Consider the entire brain, and find out which 
voxels are jointly discriminative. 

 based on a classifier with a constraint on sparseness in features 
Hampton & O’Doherty (2007); Grosenick et al. (2008, 2009) 

 based on Gaussian Processes 
Marquand et al. (2010) NeuroImage; Lomakina et al. (in preparation) 

Approach 2 – At each voxel, consider a small local 
environment, and compute a discriminability score. 

 based on a CCA 
Nandy & Cordes (2003) Magn. Reson. Med. 

 based on a classifier 

 based on Euclidean distances 

 based on Mahalanobis distances 
Kriegeskorte et al. (2006, 2007a, 2007b) 
Serences & Boynton (2007) J Neuroscience 

 based on the mutual information 
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Temporal evolution of discriminability 

Soon et al. (2008) Nature Neuroscience 

Example – decoding which button the subject pressed 

motor cortex 

frontopolar cortex 

classification 
accuracy 

decision response 
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Pattern characterization 

Example – decoding the identity of 
the person speaking to the subject in 
the scanner 

Formisano et al. (2008) Science 

vo
xe

l 1
 

... 

fingerprint plot 
(one plot per class) 
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 Classification induces constraints on the experimental design. 

 When estimating trial-wise Beta values, we need longer ITIs (typically 8 – 15 s). 

 At the same time, we need many trials (typically 100+). 

 Classes should be balanced. If they are imbalanced, we can resample the training set, 
constrain the classifier, or report the balanced accuracy. 

 Construction of examples 

 Estimation of Beta images is the preferred approach. 

 Covariates should be included in the trial-by-trial design matrix. 

 Temporal autocorrelation 

 In trial-by-trial classification, exclude trials around the test trial from the training set. 

 Avoiding double-dipping 

 Any feature selection and tuning of classifier settings should be carried out on the 
training set only. 

 Performance evaluation 

 Correct for multiple tests. 

Issues to be aware of (as researcher or reviewer) 
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Multivariate analyses in SPM are not framed in terms of classification 
problems. Instead, SPM brings multivariate analyses into the conventional 
inference framework of hierarchical models and their inversion. 
 

 

Multivariate Bayes (MVB) can be used to address two questions: 

Multivariate Bayes 

Is there a link between 𝑋 and 𝑌? 

• using cross-validation (as seen 
earlier) 

• using model comparison (new) 

What is the form of the link between 𝑋 and 𝑌? 

• smooth or sparse coding? 
(many voxels vs. few voxels) 

• category-specific representations that are 
functionally selective or functionally 
segregated? 
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Conventional inference framework 

Classical encoding model 
 𝑋 as a cause of 𝑌 
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 

Bayesian decoding model 
𝑋 as a consequence of 𝑌 
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Friston et al. (2008) NeuroImage 
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Is there a link between 𝑋 and 𝑌? 

To test for a statistical dependency 
between a contextual variable 𝑋 and the 
BOLD signal 𝑌, we compare 

 𝐻0: there is no dependency 

 𝐻𝑎: there is some dependency 

 

Which statistical test? 

1. define a test size 𝛼 
(the probability of falsely rejecting 
𝐻0, i.e., 1 − specificity), 

2. choose the test with the highest 
power 1 − 𝛽 
(the probability of correctly rejecting 
𝐻0, i.e., sensitivity). 

Lessons from the Neyman-Pearson lemma 

The Neyman-Pearson lemma 

The most powerful test of size 𝛼 is: 
to reject 𝐻0 when the likelihood ratio Λ exceeds 
a criticial value 𝑢, 

Λ 𝑌 =
𝑝 𝑌 𝑋

𝑝 𝑌
=

𝑝 𝑋 𝑌

𝑝 𝑋
≥ 𝑢 

with 𝑢 chosen such that 

𝑃 Λ 𝑌 ≥ 𝑢 𝐻0 = 𝛼. 

The null distribution of the likelihood ratio 
𝑝 Λ 𝑌 𝐻0  can be determined non-
parametrically or under parametric assumptions. 

This lemma underlies both classical statistics and 
Bayesian statistics (where Λ 𝑌  is known as a 
Bayes factor). 

Neyman & Person (1933) Phil Trans Roy Soc London 
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Lessons from the Neyman-Pearson lemma 

In summary 

1. Inference about how the brain represents 
context variables reduces to model 
comparison. 

2. To establish that a link exists between some 
context 𝑋 and activity 𝑌, the direction of the 
mapping is not important. 

3. Testing the accuracy of a classifier is not 
based on Λ is therefore suboptimal. 

Neyman & Person (1933) Phil Trans Roy Soc London 
Kass & Raftery (1995)  J Am Stat Assoc 
Friston et al. (2009) NeuroImage 
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Mapping brain activity onto a context variable is ill-posed: there is an infinite 
number of equally likely solutions. We therefore require constraints (priors) to 
estimate the voxel weights 𝛽. 

SPM comes with several alternative coding hypotheses, specified in terms of spatial 

priors on voxel weights, 𝑝 𝛽 , after transformations 𝑌 = 𝑌𝑈 and 𝛽 = 𝛽𝑈. 

Priors help to regularize the inference problem 
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Friston et al. (2008) NeuroImage 
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 MVB can be illustrated using SPM’s attention-to-motion example dataset. 
Buechel & Friston 1999 Cerebral Cortex 
Friston et al. 2008 NeuroImage 

Multivariate Bayes: example 

 This dataset is based on a simple block design. 
Each block is a combination of some of the 
following three factors: 

 photic – there is some visual stimulus 

 motion – there is motion 

 attention – subjects are paying attention 

 

 We form a design matrix by convolving box-car 
functions with a canonical haemodynamic 
response function. 

design matrix 
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Multivariate Bayes: example 

After having specified and estimated 
a design, we use the Results button. 

Next, we select the contrast of interest. 
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Multivariate Bayes: example 

We place the cursor onto 
the region of interest. 
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Multivariate Bayes: example 

Multivariate Bayes can be invoked from 
within the Multivariate section. 

We specify the region of interest as a sphere 
around the cursor. We examine the sparse coding 
hypothesis. 
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Multivariate Bayes: example 

To display results, we use the button for 
Bayesian model selection (BMS). 



40 

MVB-based predictions closely match the observed responses. But crucially, they don’t 
perfectly match them. Perfect match would indicate overfitting. 

Multivariate Bayes: example 

𝑹𝑿𝑐 
(m

o
ti

o
n

) 
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The weights attributed to each voxel in the sphere are sparse and multimodal. 
This suggests sparse coding. 

Multivariate Bayes: example 

log evidence = 3 
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MVB may outperform conventional point classifiers when using a more appropriate 
coding hypothesis. 

Multivariate Bayes: example 
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Recall: challenges for multivariate approaches 

❶  Model selection 
 
Given tens of thousands of 
voxels and very few trials of 
data, how do we find those 
brain regions that are jointly 
informative of some variable of 
interest? 

❷  Neurobiological 
interpretability 

 
How can we obtain results that 
are mechanistically 
interpretable in the context of 
the underlying neurobiological 
system? 
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Approach 
1. estimation of an encoding model 
2. nearest-neighbour classification or voting 

Identification / inferring a representational space 

Mitchell et al. (2008) Science 
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Approach 
1. estimation of an encoding model 
2. model inversion 

Reconstruction / optimal decoding 

Paninski et al. (2007) Progr Brain Res  
Pillow et al. (2008) Nature  
 

Miyawaki et al. (2009) Neuron  
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Generative embedding for fMRI 

Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (2010) NeuroImage 
Brodersen, Schofield, Leff, Ong, Lomakina, Buhmann, Stephan (under review) 

step 2 — 
kernel construction 

step 1 — 
model inversion 

measurements 
from an individual 

subject 

subject-specific 
inverted generative model 

subject representation in the 
generative score space 

A → B 

A → C 

B → B 

B → C 

A 

C 
B 

step 3 — 
classification 

separating hyperplane 
fitted to discriminate 

between groups 

A 

C 
B 

jointly discriminative 
connection strengths 

step 4 — 
interpretation 
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1. Foundations. Multivariate methods can uncover and exploit information 
jointly encoded by multiple voxels. Remember the distinction between 
prediction and inference, encoding and decoding, univariate and 
multivariate, and classification and regression. 

2. Classification. Classification studies typically aim to examine (i) overall 
discriminability, (ii) the spatial deployment of informative regions, (iii) the 
temporal evolution of discriminative activity, and (iv) the nature of the 
distributed activity. 

3. Multivariate Bayes. Multivariate Bayes offers an alternative scheme that 
maps multivariate patterns of activity onto brain states within the 
conventional statistical framework of hierarchical models and their inversion. 

4. Model-based approaches. Model-based approaches aim to augment 
previous methods by neurobiological interpretability and are likely to 
become very fruitful in the future. 

Summary 


