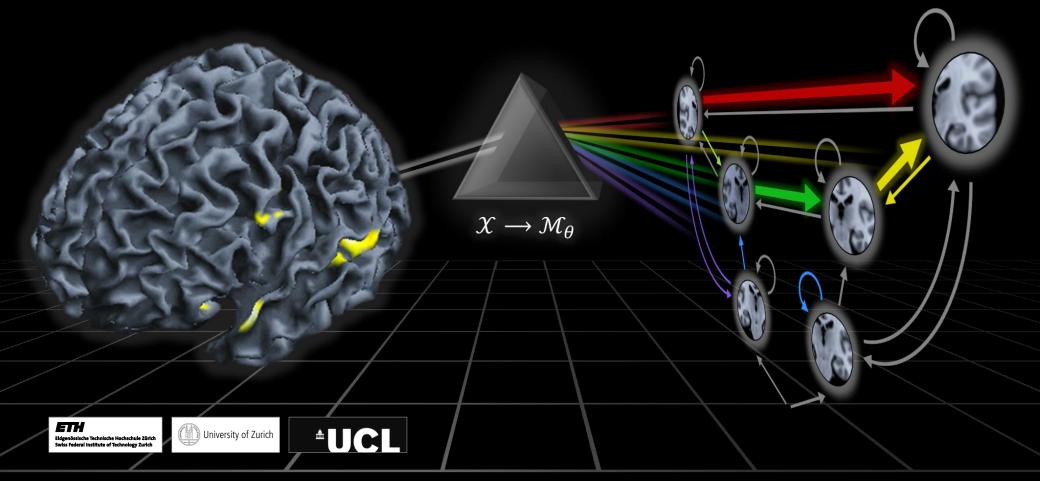
Generative embedding for model-based classification

Kay H. Brodersen^{1,2}, Thomas M. Schofield³, Alexander P. Leff³, Cheng Soon Ong¹, Ekaterina I. Lomakina^{1,2}, Joachim M. Buhmann¹, Klaas E. Stephan^{2,3}

¹ Machine Learning Laboratory, Department of Computer Science, ETH Zurich, Switzerland

² Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Switzerland

³ Wellcome Trust Centre for Neuroimaging, University College London, UK



Classification approaches by data representation

Model-based classification

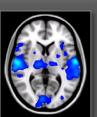
How do patterns of hidden quantities (e.g., connectivity among brain regions) differ between groups?

Structure-based classification

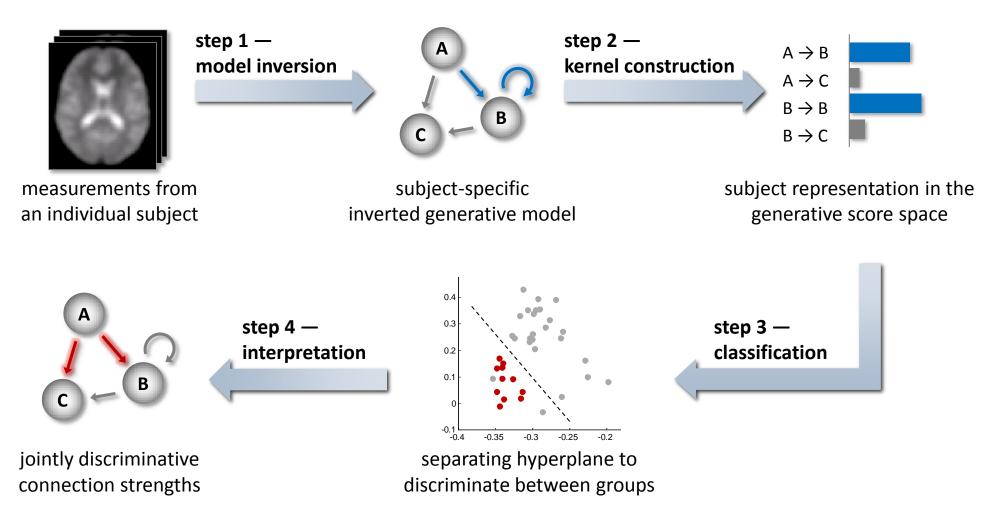
Which anatomical structures allow us to separate patients and healthy controls?

Activation-based classification

Which functional differences allow us to separate groups?

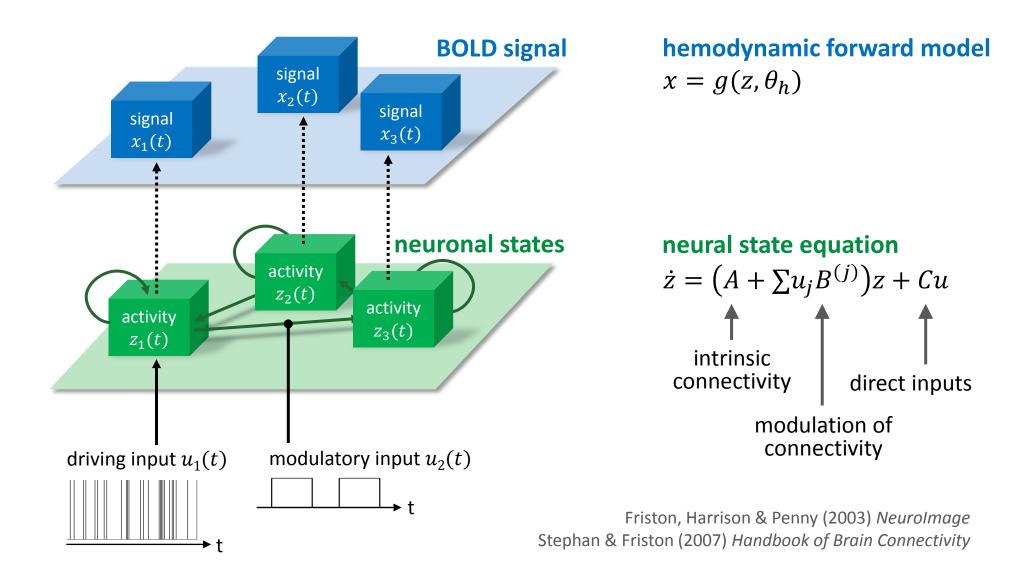


Model-based classification through generative embedding



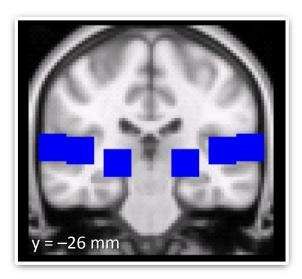
Brodersen et al. (2011) NeuroImage; Brodersen et al. (2011) PLoS Comp Biol

Choosing a generative model: DCM for fMRI



Example: diagnosing stroke patients

To illustrate our approach, we aimed to distinguish between stroke patients and healthy controls, based on non-lesioned regions involved in speech processing.

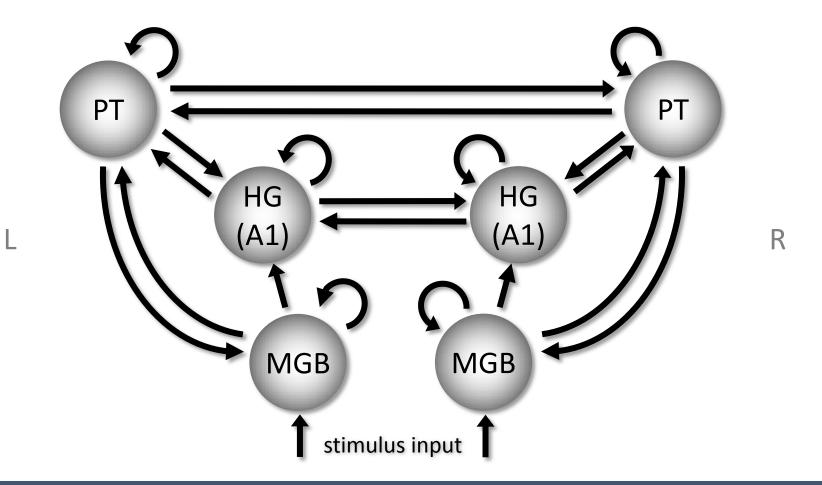


anatomical regions of interest

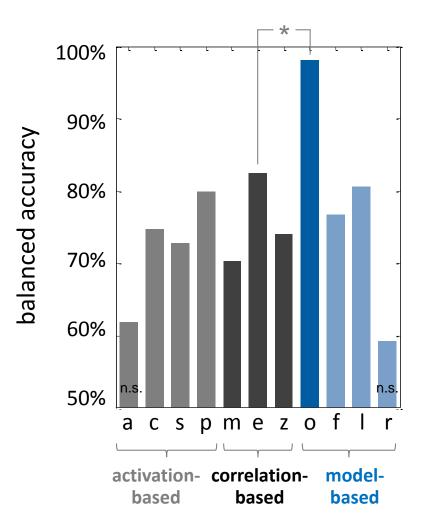
R

Example: diagnosing stroke patients

To illustrate our approach, we aimed to distinguish between stroke patients and healthy controls, based on non-lesioned regions involved in speech processing.



Classification performance



Activation-based analyses

- a anatomical feature selection
- c mass-univariate contrast feature selection
- s locally univariate searchlight feature selection
- p PCA-based dimensionality reduction

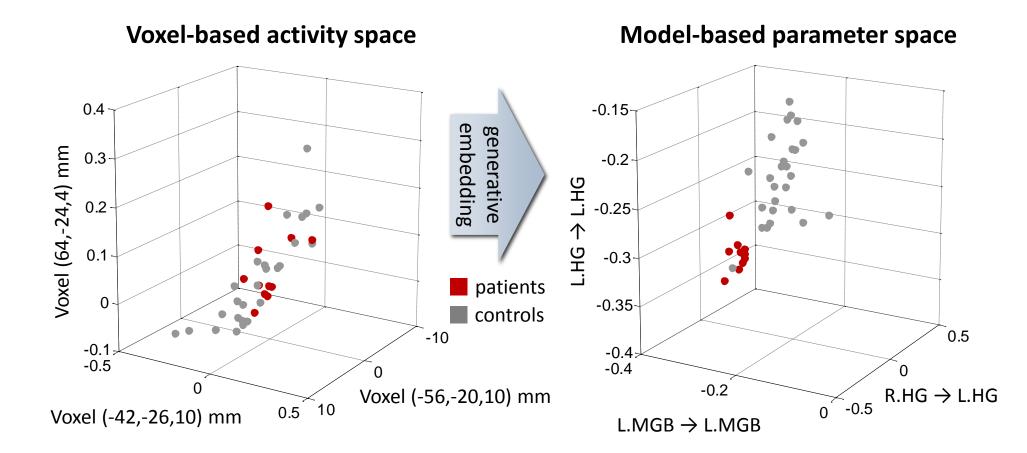
Correlation-based analyses

- **m** correlations of regional means
- e correlations of regional eigenvariates
- z Fisher-transformed eigenvariates correlations

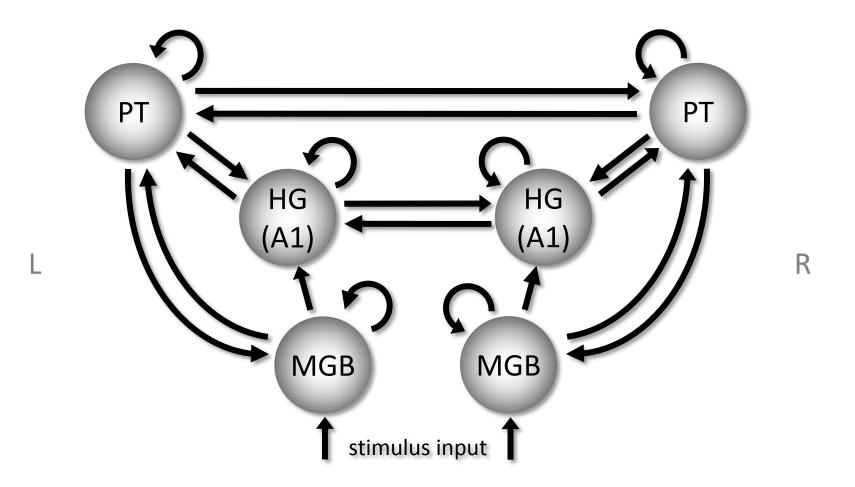
Model-based analyses

- o gen.embed., original full model
- gen.embed., less plausible feedforward model
- gen.embed., left hemisphere only
- r gen.embed., right hemisphere only

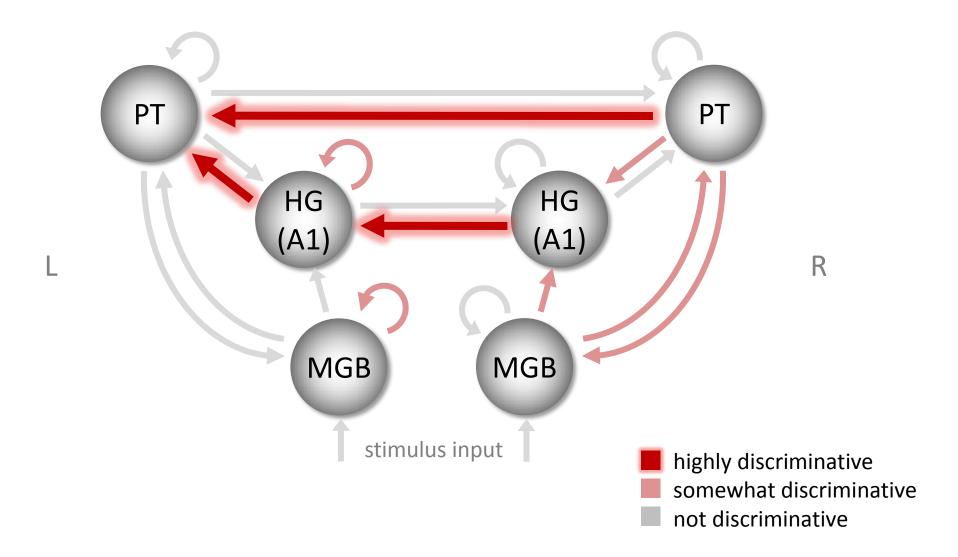
The generative projection



Discriminative features in model space



Discriminative features in model space



Summary: generative embedding for fMRI

- 1 Strong classification performance. Generative embedding exploits the rich discriminative information encoded in 'hidden' quantities, such as coupling parameters.
- 2 Creation of an interpretable feature space. Highdimensional fMRI data are replaced by low-dimensional subject-specific fingerprints with biologically interpretable axes.
- **3 Future applications.** Generative embedding could help dissect spectrum disorders into physiologically defined subgroups.

For details, see: Brodersen et al. (2011) PLoS Comp Biol