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1. Problem setting 
Model; likelihood; prior; posterior. 

2. Variational Laplace 
Factorization of posterior; why the free-energy; energies; gradient ascent; 
adaptive step size; example. 

3. Sampling 
Transformation method; rejection method; Gibbs sampling; MCMC; Metropolis-
Hastings; example. 

4. Model comparison 
Model evidence; Bayes factors; free-energy; prior arithmetic mean; posterior 
harmonic mean; Savage-Dickey; example. 

Overview 

With material from Will Penny, Klaas Enno Stephan, Chris Bishop, and Justin Chumbley. 
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Model = likelihood + prior 
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Question 1: what do the data tell us about the 
model parameters? 

 compute the posterior 

𝑝 𝜃 𝑦, 𝑚 =
𝑝 𝑦 𝜃, 𝑚 𝑝 𝜃 𝑚

𝑝 𝑦 𝑚
 

 
Question 2: which model is best? 

 compute the model evidence 

 𝑝 𝑚 𝑦 ∝ 𝑝 𝑦 𝑚 𝑝(𝑚)  
= ∫ 𝑝 𝑦 𝜃, 𝑚 𝑝 𝜃 𝑚 𝑑𝜃 

Bayesian inference is conceptually straightforward 

? 

? 
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Variational Laplace in a nutshell 
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  Iterative updating of sufficient statistics of approx. posteriors by gradient 
ascent. 

     

     

ln | , , , |

ln , , , , , |
q

p y m F KL q p y

F p y KL q p m

   

     

    

    

  Mean field approx. 

  Neg. free-energy 
approx. to model 
evidence. 

  Maximise neg. free 
energy  wrt. q = 
minimise divergence, 

 by maximising 
variational energies 

K.E. Stephan 
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Variational Laplace 

Assumptions 
 

mean-field approximation 

Laplace approximation 

W. Penny 



9 

Variational Laplace 

Inversion strategy 

Recall the relationship between the log model evidence and the negative free-energy 𝐹: 

Maximizing 𝐹 implies two things: 

(i) we obtain a good approximation to ln 𝑝 𝑦 𝑚  

(ii) the KL divergence between 𝑞 𝜃  and 𝑝 𝜃 𝑦, 𝑚  becomes minimal 

 

Practically, we can maximize F by iteratively (EM) maximizing the variational energies: 

W. Penny 

ln 𝑝 𝑦 𝑚 = 𝐸𝑞 ln 𝑝 𝑦 𝜃 − 𝐾𝐿 𝑞 𝜃 |𝑝 𝜃 𝑚

=: 𝐹

+ 𝐾𝐿 𝑞 𝜃 ||𝑝 𝜃 𝑦, 𝑚
≥0

 



10 

Variational Laplace 

Implementation: gradient-ascent scheme (Newton’s method) 
 

Compute curvature matrix 

Compute gradient vector 

𝑗𝜃 𝑖 =
𝜕𝐼(𝜃)

𝜕𝜃(𝑖)
 

𝐻𝜃 𝑖, 𝑗 =
𝜕2𝐼(𝜃)

𝜕𝜃(𝑖)𝜕𝜃(𝑗)
 

Newton’s Method for finding a root (1D) 

( ( ))
( ) ( )

'( ( ))

f x old
x new x old

f x old
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Variational Laplace 

New estimate 

Compute Newton update (change) 

Big curvature -> small step 

Small curvature -> big step  

Implementation: gradient-ascent scheme (Newton’s method) 
 

Newton’s Method for finding a root (1D) 

( ( ))
( ) ( )

'( ( ))

f x old
x new x old

f x old
 

W. Penny 
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Newton’s method – demonstration 

Newton’s method is very efficient. However, its solution is not insensitive to the starting 
point, as shown above. 

http://demonstrations.wolfram.com/LearningNewtonsMethod/ 



13 

Variational Laplace 

Nonlinear regression (example) 
 

Ground truth 

(known parameter values that 
were used to generate the data 
on the left): 

Model (likelihood): 

Data: 

t 

y(t) 

W. Penny 

where 



14 

Variational Laplace 

Nonlinear regression (example) 
 

We begin by defining our prior: Prior density (            ) (ground truth) 

W. Penny 
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Variational Laplace 

Nonlinear regression (example) 
 

Posterior density (                      ) VL optimization (4 iterations) 

Starting point ( 2.9, 1.65 ) 

VL estimate ( 3.4, 2.1 ) 

True value ( 3.4012, 2.0794 ) 

W. Penny 
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Sampling 

Deterministic approximations 
 

 computationally efficient 

 efficient representation 

 learning rules may give additional 
insight 

 application initially involves hard work 

 systematic error 

Stochastic approximations 

 
 asymptotically exact 

 easily applicable general-purpose 
algorithms 

 computationally expensive 

 storage intensive 
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We can obtain samples from some distribution 𝑝 𝑧  by first sampling from  the 
uniform distribution and then transforming these samples. 

Strategy 1 – Transformation method 
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𝑢 = 0.9 𝑧 = 1.15 

transformation:   𝑧 𝜏 = 𝐹−1 𝑢 𝜏   

 yields high-quality 
samples 

 easy to implement 

 computationally 
efficient 

 obtaining the inverse 
cdf can be difficult 
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Strategy 2 – Rejection method 

When the transformation method cannot be applied, we can resort to a more 
general method called rejection sampling. Here, we draw random numbers from a 
simpler proposal distribution 𝑞(𝑧) and keep only some of these samples. 

The proposal distribution 
𝑞(𝑧), scaled by a factor 𝑘, 
represents an envelope of 
𝑝(𝑧). 

 yields high-quality 
samples 

 easy to implement 

 can be computationally 
efficient 

 computationally 
inefficient if proposal is 
a poor approximation Bishop (2007) PRML 
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Often the joint distribution of several random variables is unavailable, whereas the 
full-conditional distributions are available. In this case, we can cycle over full-
conditionals to obtain samples from the joint distribution. 

Strategy 3 – Gibbs sampling 

 easy to implement 

 samples are serially 
correlated 

 the full-conditions 
may not be available 

Bishop (2007) PRML 
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Idea: we can sample from a large class of distributions and overcome the problems 
that previous methods face in high dimensions using a framework called Markov 
Chain Monte Carlo. 

 

Strategy 4 – Markov Chain Monte Carlo (MCMC) 

Increase in density: 

Decrease in density: 

p(z*) 
p(zτ) 

p(zτ) 

p(z*) 

zτ 

zτ 

z* 

z* 

1

)(~
*)(~




zp

zp


M. Dümcke 
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MCMC demonstration: finding a good proposal density 

When the proposal distribution is too 
narrow, we might miss a mode. 

When it is too wide, we obtain long 
constant stretches without an acceptance. 

http://demonstrations.wolfram.com/MarkovChainMonteCarloSimulationUsingTheMetropolisAlgorithm/ 
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MH creates as series of random points 𝜃 1 , 𝜃 2 , … , whose 
distribution converges to the target distribution of interest. For us, this 
is the posterior density 𝑝(𝜃|𝑦). 

 

We could use the following proposal distribution: 

 
𝑞 𝜃 𝜏 𝜃 𝜏−1 = 𝒩 0, 𝜎𝐶𝜃  

MCMC for DCM 

prior covariance 

scaling factor 
adapted such that acceptance 
rate is between 20% and 40% 

W. Penny 
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MCMC for DCM 

W. Penny 
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MCMC – example 

W. Penny 
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MCMC – example 

W. Penny 
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MCMC – example 

Variational-Laplace Metropolis-Hastings 

W. Penny 
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Model evidence 

W. Penny 
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Prior arithmetic mean 

W. Penny 
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Posterior harmonic mean 

W. Penny 
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In many situations we wish to compare models that are nested. For example: 

 

𝑚𝐹: full model with parameters 𝜃 = 𝜃1, 𝜃2  

𝑚𝑅: reduced model with 𝜃 = (𝜃1, 0) 

 

Savage-Dickey ratio 

In this case, we can use the Savage-
Dickey ratio to obtain a Bayes factor 
without having to compute the two 
model evidences: 

 

𝐵𝑅𝐹 =
𝑝 𝜃2 = 0 𝑦, 𝑚𝐹

𝑝 𝜃2 = 0 𝑚𝐹
 

𝐵𝑅𝐹 = 0.9 

W. Penny 
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Comparison of methods 

Chumbley et al. (2007) NeuroImage 

MCMC 
VL 
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Comparison of methods 
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Chumbley et al. (2007) NeuroImage 


