Multivariate analyses & decoding

Kay Henning Brodersen

Computational Neuroeconomics Group
Department of Economics, University of Zurich

Machine Learning and Pattern Recognition Group
Department of Computer Science, ETH Zurich

http://people.inf.ethz.ch/bkay
Why multivariate?

Multivariate approaches simultaneously consider brain activity in many locations.

Haxby et al. (2001) *Science*

Lautrup et al. (1994) *Supercomputing in Brain Research*
Why multivariate?

Multivariate approaches can utilize information jointly encoded in multiple voxels. This is because multivariate distance measures can account for correlations between voxels.
Why multivariate?

Multivariate approaches can exploit a sampling bias in voxelized images to reveal interesting activity on a subvoxel scale.

Why multivariate?

Multivariate approaches can utilize ‘hidden’ quantities such as coupling strengths.

neural state equation:

$$\dot{z} = \left(A + \sum_{i=1}^{m} u_i B^{(i)} + \sum_{j=1}^{n} z_j D^{(j)} \right) z + Cu$$

Stephan et al. (2008) *NeuroImage*
Outline

1. Foundations
2. Classification
3. Multivariate Bayes
4. Further model-based approaches
Outline

1 Foundations
2 Classification
3 Multivariate Bayes
4 Further model-based approaches
Modelling terminology

1 Encoding vs. decoding

An **encoding** model (or generative model) relates context to brain activity. A **decoding** model (or recognition model) relates brain activity to context.
Modelling terminology

2 Prediction vs. inference

The goal of **prediction** is to find a highly accurate encoding or decoding function.

The goal of **inference** is to decide between competing hypotheses about structure-function mappings in the brain.

- **Prediction**
 - Predicting a cognitive state using a brain-machine interface
 - Predicting a subject-specific diagnostic status

- **Inference**
 - Comparing a model that links distributed neuronal activity to a cognitive state with a model that does not
 - Weighing the evidence for sparse coding vs. dense coding

Predictive density

\[p(X_{\text{new}}|Y_{\text{new}}, X, Y) = \int p(X_{\text{new}}|Y_{\text{new}}, \theta)p(\theta|X, Y)d\theta \]

Marginal likelihood

\[p(X|Y) = \int p(X|Y, \theta)p(\theta)d\theta \]
Modelling terminology

3 Univariate vs. multivariate

A univariate model considers a single voxel at a time.

A multivariate model considers many voxels at once.

The implicit likelihood of the data factorizes over voxels, $p(Y_t|X_t) = \prod_{i=1}^{P} p(Y_{t,i}|X_t)$.

Spatial dependencies between voxels are introduced afterwards, through random field theory. This enables multivariate inferences over voxels (i.e., cluster-level or set-level inference).

Multivariate models relax the assumption about independence of voxels.

They enable inference about distributed responses without requiring focal activations or certain topological response features. They can therefore be more powerful than univariate analyses.
Regression vs. classification

In a regression model, the dependent variable is continuous.

In a classification model, the dependent variable is categorical (e.g., binary).
Modelling terminology

5 Goodness of fit vs. complexity

A measure of **goodness of fit** assesses how well the model fits available data.

A measure of **complexity** assesses the amount of structure and the degree of flexibility of a model, including, among other things, its number of parameters.

We typically wish to find the model that **generalizes best to new data**. This is the model that optimally trades off goodness of fit and complexity.

Bishop (2007) *PRML*
Summary of modelling terminology

General Linear Model (GLM)
mass-univariate encoding model for regressing context onto brain activity and inferring on topological response features

Classification
based on multivariate decoding models for predicting a categorical context label from brain activity

Dynamic Causal Modelling (DCM)
multivariate encoding model for comparing alternative connectivity hypotheses

Multivariate Bayes (MVB)
multivariate encoding model for comparing alternative coding hypotheses
Outline

1 Foundations
2 Classification
3 Multivariate Bayes
4 Further model-based approaches
In classification, we aim to predict a target variable X from data Y,

$$h: Y_t \rightarrow X_t \in \{1, ..., K\}$$

Most classifiers are designed to estimate the unknown probabilities of an example belonging to a particular class:

$$h(Y_t) = \arg\max_k p(X_t = k|Y_t, X, Y)$$

Generative classifiers

- use Bayes’ rule to estimate $p(X_t|Y_t) \propto p(Y_t|X_t)p(X_t)$

 e.g., Gaussian Naïve Bayes
 Linear Discriminant Analysis

Discriminative classifiers

- estimate $p(X_t|Y_t)$ directly without Bayes’ theorem

 e.g., Logistic regression
 Relevance Vector Machine

Discriminant classifiers

- estimate $h(Y_t)$ directly

 e.g., Support Vector Machine
 Fisher’s Linear Discriminant
The support vector machine (SVM) is a discriminant classifier.

- **Training** – Find a hyperplane with a maximal margin to the nearest examples on either side.
- **Test** – Assign a new example to the class corresponding to its side of the plane.

SVMs are used in many domains of application.

- **Efficiency** – SVMs are fast and easy to use.
- **Performance** – SVMs usually perform well compared to other classifiers.
- **Flexibility** – The need for vectorial representations of examples is replaced by a similarity measure, defined via a kernel function $k(Y_i, Y_j)$.

Typically, we have many more voxels than observations. This means that there are infinitely many models that enable perfect classification of the available data. But these models might have overfit the data.

Overfitting is usually not an issue in GLM analyses, where the number of regressors is much smaller than the number of observations.

We want to find a classification model $h: Y \to X$ that generalizes well to new data. Given some training data, we might consider the probability

$$P \left(h(Y^{(\text{test})}) = X^{(\text{test})} \mid Y^{(\text{train})}, X^{(\text{train})} \right).$$

However, this quantity is dependent on the training data. So instead we should consider the generalizability

$$E_{\text{training}} \left[P \left(h(Y^{(\text{test})}) = X^{(\text{test})} \mid Y^{(\text{train})}, X^{(\text{train})} \right) \right],$$

which we can approximate using cross-validation.
Cross-validation is a resampling procedure that can be used to estimate the generalizability of a classifier.

```
Examples

1 2 3
... 99 ...
100

Folds

1 2 3
... 99 ...
100

Training examples

Test example
```
Trial-by-trial classification of fMRI data

1. Feature extraction
 - e.g., voxels

2. Feature selection

3. Classification
 - Accuracy estimate [% correct]

Train: learning a mapping
\[Y^{(\text{train})} \xrightarrow{\theta} X^{(\text{train})} \]

Test: apply the learned mapping

fMRI timeseries

Trials

Voxels
Target questions in classification studies

A Overall classification accuracy

B Spatial deployment of informative regions

C Temporal evolution of informativeness

D Characterization of distributed activity

Accuracy rises above chance

The most principled approach is to deconvolve the BOLD signal using a GLM.

This approach results in one beta image per trial and phase.
Performance evaluation

subject 1

subject 2

subject 3

subject 4

subject m

subject m+1

population

\[
\begin{bmatrix}
0 \\
1 \\
1 \\
1 \\
0 \\
1 \\
1 \\
0 \\
1 \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
1 \\
0 \\
1 \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 \\
1 \\
1 \\
1 \\
0 \\
1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}
\]

Brodersen et al. (in preparation)
Performance evaluation

Single-subject study

The most common approach is to assess how likely the obtained number of correctly classified trials could have occurred by chance.

\[p = P(X \geq k|H_0) = 1 - B(k|n, \pi_0) \]

- \(p \) probability of observing the obtained performance by chance
- \(k \) number of correctly classified trials
- \(n \) total number of trials
- \(\pi_0 \) probability of getting a single result right by chance
- \(B \) binomial cumulative density function

In publications, this approach is referred to as a binomial test.

It is based on the assumption that, under the Null hypothesis, the classifier produces random predictions.
Performance evaluation

Group study

The most common approach is to assess the probability with which the observed subject-wise sample accuracies were sampled from a distribution with a mean equal to chance.

\[
t = \sqrt{m} \frac{\bar{\pi} - \pi_0}{\hat{\sigma}_{m-1}} \\
p = 1 - t_{m-1}(t)
\]

- \(p \): probability of observing the obtained performance by chance
- \(m \): number of subjects
- \(\bar{\pi} \): sample mean of subject-wise sample accuracies
- \(\hat{\sigma}_{m-1} \): sample standard deviation of subject-wise sample accuracies
- \(\pi_0 \): probability of getting a single result right by chance
- \(t_{m-1} \): cumulative Student’s \(t \)-distribution with \(m - 1 \) d.o.f.

This approach represents a random-effects analysis of classification outcomes based on the additional assumption that the mean of sample accuracies is approximately Normal.
Spatial deployment of informative voxels

Approach 1 – Consider the **entire brain**, and find out which voxels are jointly discriminative.

- based on a classifier with a constraint on sparseness in features
 Hampton & O’Doherty (2007); Grosenick et al. (2008, 2009)
- based on Gaussian Processes
 Marquand et al. (2010) NeuroImage; Lomakina et al. (*in preparation*)

Approach 2 – At each voxel, consider a **small local environment**, and compute a discriminability score.

- based on a CCA
- based on a classifier
- based on Euclidean distances
- based on Mahalanobis distances
 Kriegeskorte et al. (2006, 2007a, 2007b)
 Serences & Boynton (2007) *J Neuroscience*
- based on the mutual information
Temporal evolution of discriminability

Example – decoding which button the subject pressed

Soon et al. (2008) *Nature Neuroscience*
Example – decoding the identity of the person speaking to the subject in the scanner

fingerprint plot (one plot per class)

Formisano et al. (2008) *Science*
Issues to be aware of (as researcher or reviewer)

- Classification induces constraints on the experimental design.
 - When estimating trial-wise Beta values, we need longer ITIs (typically 8 – 15 s).
 - At the same time, we need many trials (typically 100+).
 - Classes should be balanced. If they are imbalanced, we can resample the training set, constrain the classifier, or report the balanced accuracy.

- Construction of examples
 - Estimation of Beta images is the preferred approach.
 - Covariates should be included in the trial-by-trial design matrix.

- Temporal autocorrelation
 - In trial-by-trial classification, exclude trials around the test trial from the training set.

- Avoiding double-dipping
 - Any feature selection and tuning of classifier settings should be carried out on the training set only.

- Performance evaluation
 - Do random-effects or mixed-effects inference.
 - Correct for multiple tests.
Outline

1. Foundations
2. Classification
3. Multivariate Bayes
4. Further model-based approaches
Multivariate analyses in SPM are not framed in terms of classification problems. Instead, SPM brings multivariate analyses into the conventional inference framework of hierarchical models and their inversion.

Multivariate Bayes (MVB) can be used to address two questions:

Is there a link between X **and** Y **?**
- using cross-validation (as seen earlier)
- using model comparison (new)

What is the form of the link between X **and** Y **?**
- smooth or sparse coding? (many voxels vs. few voxels)
- category-specific representations that are functionally selective or functionally segregated?
Conventional inference framework

Classical encoding model

\[X \text{ as a cause of } Y \]

\[X \]

\[A = X\beta \]

\[Y = TA + G\gamma + \epsilon \]

\[g(\theta) : X \rightarrow Y \]

\[Y = TX\beta + G\gamma + \epsilon \]

Bayesian decoding model

\[X \text{ as a consequence of } Y \]

\[A \]

\[X = A\beta \]

\[Y = TA + G\gamma + \epsilon \]

\[h(\theta) : Y \rightarrow X \]

Friston et al. (2008) *NeuroImage*
Is there a link between X and Y?

To test for a statistical dependency between a contextual variable X and the BOLD signal Y, we compare

- H_0: there is no dependency
- H_a: there is some dependency

Which statistical test?

1. define a test size α (the probability of falsely rejecting H_0, i.e., $1 - \text{specificity}$),
2. choose the test with the highest power $1 - \beta$ (the probability of correctly rejecting H_0, i.e., sensitivity).

The Neyman-Pearson lemma

The most powerful test of size α is: to reject H_0 when the likelihood ratio Λ exceeds a critical value u,

$$\Lambda(Y) = \frac{p(Y|X)}{p(Y)} = \frac{p(X|Y)}{p(X)} \geq u$$

with u chosen such that

$$P(\Lambda(Y) \geq u | H_0) = \alpha.$$

The null distribution of the likelihood ratio $p(\Lambda(Y)|H_0)$ can be determined non-parametrically or under parametric assumptions.

This lemma underlies both classical statistics and Bayesian statistics (where $\Lambda(Y)$ is known as a Bayes factor).

Neyman & Person (1933) *Phil Trans Roy Soc London*
Lessons from the Neyman-Pearson lemma

In summary

1. Inference about how the brain represents context variables reduces to model comparison.

2. To establish that a link exists between some context X and activity Y, the direction of the mapping is not important.

3. Testing the accuracy of a classifier is not based on Λ is therefore suboptimal.

Neyman & Person (1933) *Phil Trans Roy Soc London*
Friston et al. (2009) *NeuroImage*
Mapping brain activity onto a context variable is ill-posed: there is an infinite number of equally likely solutions. We therefore require constraints (priors) to estimate the voxel weights β.

SPM comes with several alternative coding hypotheses, specified in terms of spatial priors on voxel weights, $p(\tilde{\beta})$, after transformations $\tilde{Y} = YU$ and $\tilde{\beta} = \beta U$.

Null: $U = \emptyset$

Spatial vectors: $U = I$

Smooth vectors: $U(\tilde{x}_i, \tilde{x}_j) = \exp\left(-\frac{1}{2}(\tilde{x}_i - \tilde{x}_j)^2\sigma^{-2}\right)$

Singular vectors: $UDV^T = RY^T$

Support vectors: $U = RY^T$

Friston et al. (2008) *Neuroimage*
Multivariate Bayes: example

- MVB can be illustrated using SPM’s attention-to-motion example dataset.
 Buechel & Friston 1999 *Cerebral Cortex*
 Friston et al. 2008 *NeuroImage*

- This dataset is based on a simple block design. Each block is a combination of some of the following three factors:
 - photic – there is some visual stimulus
 - motion – there is motion
 - attention – subjects are paying attention

- We form a design matrix by convolving box-car functions with a canonical haemodynamic response function.
Multivariate Bayes: example

After having specified and estimated a design, we use the Results button.

Next, we select the contrast of interest.
Multivariate Bayes: example

We place the cursor onto the region of interest.
Multivariate Bayes: example

Multivariate Bayes can be invoked from within the Multivariate section.

We specify the region of interest as a sphere around the cursor. We examine the *sparse* coding hypothesis.
Multivariate Bayes: example

To display results, we use the button for Bayesian model selection (BMS).
MVB-based predictions closely match the observed responses. But crucially, they don’t perfectly match them. Perfect match would indicate overfitting.
The weights attributed to each voxel in the sphere are sparse and multimodal. This suggests sparse coding.
MVB may outperform conventional point classifiers when using a more appropriate coding hypothesis.
Outline

1 Foundations
2 Classification
3 Multivariate Bayes
4 Further model-based approaches
Recall: challenges for multivariate approaches

1. **Variable selection**
 Given tens of thousands of voxels and very few trials of data, how do we find those brain regions that are jointly informative of some variable of interest?

2. **Neurobiological interpretability**
 How can we obtain results that are mechanistically interpretable in the context of the underlying neurobiological system?
Approach
1. estimation of an encoding model
2. nearest-neighbour classification or voting

Mitchell et al. (2008) *Science*
Reconstruction / optimal decoding

Approach

1. estimation of an encoding model
2. model inversion

Paninski et al. (2007) Progr Brain Res
Pillow et al. (2008) Nature

Miyawaki et al. (2009) Neuron
Model-based classification by generative embedding

Step 1 — Model Inversion

\[X \rightarrow \mathcal{M}_\Theta \]

measurements from an individual subject

Step 2 — Kernel Construction

\[\mathcal{M}_\Theta \rightarrow \mathbb{R}^d \]

subject representation in the generative score space

\[k : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R} \]

subject-specific inverted generative model

Step 3 — Classification

\[\hat{c} = \text{sgn} \left(\sum^n_i \alpha_i^* k(x_i, x) + b^* \right) \]

separating hyperplane fitted to discriminate between groups

Step 4 — Interpretation

jointly discriminative connection strengths

Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (2011) *NeuroImage*

1. **Foundations.** Multivariate methods can uncover and exploit information jointly encoded by multiple voxels. Remember the distinction between prediction and inference, encoding and decoding, univariate and multivariate, and classification and regression.

2. **Classification.** Classification studies typically aim to examine (i) overall discriminability, (ii) the spatial deployment of informative regions, (iii) the temporal evolution of discriminative activity, and (iv) the nature of the distributed activity.

3. **Multivariate Bayes.** Multivariate Bayes offers an alternative scheme that maps multivariate patterns of activity onto brain states within the conventional statistical framework of hierarchical models and their inversion.

4. **Model-based approaches.** Model-based approaches aim to augment previous methods by neurobiological interpretability and are likely to become very fruitful in the future.