Multivariate analyses & decoding

Kay Henning Brodersen

Computational Neuroeconomics Group Department of Economics, University of Zurich

Machine Learning and Pattern Recognition Group Department of Computer Science, ETH Zurich

http://people.inf.ethz.ch/bkay

Multivariate approaches simultaneously consider brain activity in many locations.

Haxby et al. (2001) Science

Lautrup et al. (1994) Supercomputing in Brain Research

Multivariate approaches can utilize information jointly encoded in multiple voxels. This is because multivariate distance meausures can account for correlations between voxels.

Multivariate approaches can exploit a sampling bias in voxelized images to reveal interesting activity on a subvoxel scale.

Boynton (2005) *Nature Neuroscience*

Multivariate approaches can utilize 'hidden' quantities such as coupling strengths.

$$\dot{z} = \left(A + \sum_{i=1}^{m} u_i B^{(i)} + \sum_{j=1}^{n} z_j D^{(j)}\right) z + Cu$$

Stephan et al. (2008) NeuroImage

Outline

- 1 Foundations
- 2 Classification
- 3 Multivariate Bayes
- 4 Further model-based approaches

Outline

- 1 Foundations
- 2 Classification
- 3 Multivariate Bayes
- 4 Further model-based approaches

1 Encoding vs. decoding

An **encoding** model (or generative model) relates context to brain activity. A **decoding** model (or recognition model) relates brain activity to context.

2 Prediction vs. inference

The goal of **prediction** is to find a highly accurate encoding or decoding function.

predicting a cognitive state using a brain-machine interface

predicting a subject-specific diagnostic status

The goal of **inference** is to decide between competing hypotheses about structure-function mappings in the brain.

comparing a model that links distributed neuronal activity to a cognitive state with a model that does not

weighing the evidence for sparse coding vs. dense coding

predictive density
$$p(X_{new}|Y_{new},X,Y) = \int p(X_{new}|Y_{new},\theta)p(\theta|X,Y)d\theta$$

marginal likelihood
$$p(X|Y) = \int p(X|Y,\theta)p(\theta)d\theta$$

3 Univariate vs. multivariate

A univariate model considers a single voxel at a time.

The implicit likelihood of the data factorizes over voxels, $p(Y_t|X_t) = \prod_{i=1}^{v} p(Y_{t,i}|X_t)$.

Spatial dependencies between voxels are introduced afterwards, through random field theory. This enables multivariate inferences over voxels (i.e., cluster-level or set-level inference).

A multivariate model considers many voxels at once.

Multivariate models relax the assumption about independence of voxels.

They enable inference about distributed responses without requiring focal activations or certain topological response features. They can therefore be more powerful than univariate analyses.

4 Regression vs. classification

In a **regression** model, the dependent variable is continuous.

In a classification model, the dependent variable is categorical (e.g., binary).

5 Goodness of fit vs. complexity

A measure of **goodness of fit** assesses how well the model fits available data.

A measure of **complexity** assesses the amount of structure and the degree of flexibility of a model, including, among other things, its number of parameters.

We typically wish to find the model that **generalizes best to new data**. This is the model that optimally trades off goodness of fit and complexity.

Bishop (2007) PRML

Summary of modelling terminology

General Linear Model (GLM)

mass-univariate encoding model for regressing context onto brain activity and inferring on topological response features

Dynamic Causal Modelling (DCM)

multivariate encoding model for comparing alternative connectivity hypotheses

Classification

based on multivariate decoding models for predicting a categorical context label from brain activity

Multivariate Bayes (MVB)

multivariate encoding model for comparing alternative coding hypotheses

Outline

- 1 Foundations
- 2 Classification
- 3 Multivariate Bayes
- 4 Further model-based approaches

Constructing a classifier

In classification, we aim to predict a target variable X from data Y,

$$h: Y_t \to X_t \in \{1, ..., K\}$$

Most classifiers are designed to estimate the unknown probabilities of an example belonging to a particular class:

$$h(Y_t) = \arg\max_{k} p(X_t = k | Y_t, X, Y)$$

Generative classifiers

use Bayes' rule to estimate $p(X_t|Y_t) \propto p(Y_t|X_t)p(X_t)$

e.g., Gaussian Naïve Bayes Linear Discriminant Analysis

Discriminative classifiers

estimate $p(X_t|Y_t)$ directly without Bayes' theorem

e.g., Logistic regression Relevance Vector Machine

Discriminant classifiers

estimate $h(Y_t)$ directly

e.g., Support Vector Machine Fisher's Linear Discriminant

Support vector machines

The support vector machine (SVM) is a discriminant classifier.

- Training Find a hyperplane with a maximal margin to the nearest examples on either side.
- Test Assign a new example to the class corresponding to its side of the plane.

SVMs are used in many domains of application.

- Efficiency SVMs are fast and easy to use.
- Performance SVMs usually perform well compared to other classifiers.
- Flexibility The need for vectorial representations of examples is replaced by a similarity measure, defined via a kernel function $k(Y_i, Y_i)$.

Linear SVM

Nonlinear SVM

Vapnik (1999) Springer; Schölkopf et al. (2002) MIT Press

Generalizability of a classifier

Typically, we have many more voxels than observations. This means that there are infinitely many models that enable perfect classification of the available data. But these models might have overfit the data.

Overfitting is usually not an issue in GLM analyses, where the number of regressors is much smaller than the number of observations.

We want to find a classification model $h: Y \to X$ that generalizes well to new data. Given some training data, we might consider the probability

$$P(h(Y^{(\text{test})}) = X^{(\text{test})}|Y^{(\text{train})}, X^{(\text{train})}).$$

However, this quantity is dependent on the training data. So instead we should consider the generalizability

$$E_{\text{training}}\left[P\left(h(Y^{(\text{test})}) = X^{(\text{test})} | Y^{(\text{train})}, X^{(\text{train})}\right)\right],$$

which we can approximate using cross-validation.

Cross-validation

Cross-validation is a resampling procedure that can be used to estimate the generalizability of a classifier.

Trial-by-trial classification of fMRI data

Target questions in classification studies

Pereira et al. (2009) NeuroImage, Brodersen et al. (2009) The New Collection

Preprocessing for classification

The most principled approach is to deconvolve the BOLD signal using a GLM.

This approach results in one beta image per trial and phase.

Performance evaluation

Brodersen et al. (in preparation)

Performance evaluation

The most common approach is to assess how likely the obtained number of correctly classified trials could have occurred by chance.

$$p = P(X \ge k|H_0) = 1 - B(k|n, \pi_0)$$

- p probability of observing the obtained performance by chance
- *k* number of correctly classified trials
- *n* total number of trials
- π_0 probability of getting a single result right by chance
- *B* binomial cumulative density function

In publications, this approach is referred to as a binomial test.

It is based on the assumption that, under the Null hypothesis, the classifier produces random predictions.

Performance evaluation

段 Group study

The most common approach is to assess the probability with which the observed subject-wise sample accuracies were sampled from a distribution with a mean equal to chance.

```
t = \sqrt{m} \frac{\overline{\pi} - \pi_0}{\widehat{\sigma}_{m-1}}
p = 1 - t_{m-1}(t)
```

 $\begin{array}{ll} p & \text{probability of observing the obtained performance by chance} \\ m & \text{number of subjects} \\ \bar{\pi} & \text{sample mean of subject-wise sample accuracies} \\ \hat{\sigma}_{m-1} & \text{sample standard deviation of subject-wise sample accuracies} \\ \pi_0 & \text{probability of getting a single result right by chance} \\ t_{m-1} & \text{cumulative Student's t-distribution with $m-1$ d.o.f.} \end{array}$

This approach represents a random-effects analysis of classification outcomes based on the additional assumption that the mean of sample accuracies is approximately Normal.

Spatial deployment of informative voxels

Approach 1 – Consider the entire brain, and find out which voxels are jointly discriminative.

- based on a classifier with a constraint on sparseness in features
 Hampton & O'Doherty (2007); Grosenick et al. (2008, 2009)
- based on Gaussian Processes
 Marquand et al. (2010) NeuroImage; Lomakina et al. (in preparation)

Approach 2 – At each voxel, consider a small local environment, and compute a discriminability score.

- based on a CCA
 Nandy & Cordes (2003) Magn. Reson. Med.
- based on a classifier
- based on Euclidean distances
- based on Mahalanobis distances Kriegeskorte et al. (2006, 2007a, 2007b) Serences & Boynton (2007) J Neuroscience
- based on the mutual information

Temporal evolution of discriminability

Example – decoding which button the subject pressed

Soon et al. (2008) Nature Neuroscience

Pattern characterization

Example – decoding the identity of the person speaking to the subject in the scanner

fingerprint plot (one plot per class)

Formisano et al. (2008) Science

Issues to be aware of (as researcher or reviewer)

- Classification induces constraints on the experimental design.
 - When estimating trial-wise Beta values, we need longer ITIs (typically 8 15 s).
 - At the same time, we need many trials (typically 100+).
 - Classes should be balanced. If they are imbalanced, we can resample the training set, constrain the classifier, or report the balanced accuracy.
- Construction of examples
 - Estimation of Beta images is the preferred approach.
 - Covariates should be included in the trial-by-trial design matrix.
- Temporal autocorrelation
 - In trial-by-trial classification, exclude trials around the test trial from the training set.
- Avoiding double-dipping
 - Any feature selection and tuning of classifier settings should be carried out on the training set only.
- Performance evaluation
 - Do random-effects or mixed-effects inference.
 - Correct for multiple tests.

Outline

- 1 Foundations
- 2 Classification
- 3 Multivariate Bayes
- 4 Further model-based approaches

Multivariate Bayes

Multivariate analyses in SPM are not framed in terms of classification problems. Instead, SPM brings multivariate analyses into the conventional inference framework of hierarchical models and their inversion.

Multivariate Bayes (MVB) can be used to address two questions:

Is there a link between X and Y?

- using cross-validation (as seen earlier)
- using model comparison (new)

What is the form of the link between X and Y?

- smooth or sparse coding? (many voxels vs. few voxels)
- category-specific representations that are functionally selective or functionally segregated?

Conventional inference framework

Classical encoding model

X as a cause of Y

Bayesian decoding model

X as a consequence of Y

Friston et al. (2008) NeuroImage

Lessons from the Neyman-Pearson lemma

Is there a link between *X* and *Y*?

To test for a statistical dependency between a contextual variable X and the BOLD signal Y, we compare

- \blacksquare H_0 : there is no dependency
- \blacksquare H_a : there is some dependency

Which statistical test?

- 1. define a test size α (the probability of falsely rejecting H_0 , i.e., 1 specificity),
- 2. choose the test with the highest power 1β (the probability of correctly rejecting H_0 , i.e., sensitivity).

The Neyman-Pearson lemma

The most powerful test of size α is: to reject H_0 when the likelihood ratio Λ exceeds a criticial value u,

$$\Lambda(Y) = \frac{p(Y|X)}{p(Y)} = \frac{p(X|Y)}{p(X)} \ge u$$

with u chosen such that

$$P(\Lambda(Y) \ge u|H_0) = \alpha.$$

The null distribution of the likelihood ratio $p(\Lambda(Y)|H_0)$ can be determined non-parametrically or under parametric assumptions.

This lemma underlies both classical statistics and Bayesian statistics (where $\Lambda(Y)$ is known as a Bayes factor).

Neyman & Person (1933) Phil Trans Roy Soc London

Lessons from the Neyman-Pearson lemma

In summary

- 1. Inference about how the brain represents context variables reduces to model comparison.
- 2. To establish that a link exists between some context *X* and activity *Y*, the direction of the mapping is not important.
- 3. Testing the accuracy of a classifier is not based on Λ is therefore suboptimal.

Neyman & Person (1933) *Phil Trans Roy Soc London* Kass & Raftery (1995) *J Am Stat Assoc* Friston et al. (2009) *NeuroImage*

Priors help to regularize the inference problem

Mapping brain activity onto a context variable is ill-posed: there is an infinite number of equally likely solutions. We therefore require constraints (priors) to estimate the voxel weights β .

SPM comes with several alternative coding hypotheses, specified in terms of spatial priors on voxel weights, $p(\tilde{\beta})$, after transformations $\tilde{Y} = YU$ and $\tilde{\beta} = \beta U$.

Null: $U = \emptyset$

Spatial vectors: U = I

Smooth vectors: $U(\vec{x}_i, \vec{x}_j) = \exp(-\frac{1}{2}(\vec{x}_i - \vec{x}_j)^2 \sigma^{-2})$

Singular vectors: $UDV^T = RY^T$

Support vectors: $U = RY^T$

Friston et al. (2008) NeuroImage

Multivariate Bayes: example

MVB can be illustrated using SPM's attention-to-motion example dataset.

Buechel & Friston 1999 *Cerebral Cortex* Friston et al. 2008 *NeuroImage*

- This dataset is based on a simple block design. Each block is a combination of some of the following three factors:
 - □ photic there is some visual stimulus
 - □ motion there is motion
 - □ attention subjects are paying attention
- We form a design matrix by convolving box-car functions with a canonical haemodynamic response function.

Multivariate Bayes: example

After having specified and estimated a design, we use the *Results* button.

Next, we select the contrast of interest.

We place the cursor onto the region of interest.

Multivariate Bayes can be invoked from within the Multivariate section.

We specify the region of interest as a sphere around the cursor. We examine the *sparse* coding hypothesis.

To display results, we use the button for Bayesian model selection (BMS).

MVB-based predictions closely match the observed responses. But crucially, they don't perfectly match them. Perfect match would indicate overfitting.

The weights attributed to each voxel in the sphere are sparse and multimodal. This suggests sparse coding.

MVB may outperform conventional point classifiers when using a more appropriate coding hypothesis.

Outline

- 1 Foundations
- 2 Classification
- 3 Multivariate Bayes
- 4 Further model-based approaches

Recall: challenges for multivariate approaches

1 Variable selection

Given tens of thousands of voxels and very few trials of data, how do we find those brain regions that are jointly informative of some variable of interest?

2 Neurobiological interpretability

How can we obtain results that are mechanistically interpretable in the context of the underlying neurobiological system?

Identification / inferring a representational space

Approach

- 1. estimation of an encoding model
- nearest-neighbour classification or voting

Reconstruction / optimal decoding

Approach

- 1. estimation of an encoding model
- 2. model inversion

Paninski et al. (2007) *Progr Brain Res* Pillow et al. (2008) *Nature*

Miyawaki et al. (2009) Neuron

Model-based classification by generative embedding

measurements from an individual subject

subject-specific inverted generative model

subject representation in the generative score space

jointly discriminative connection strengths

separating hyperplane fitted to discriminate between groups

-0.3

-0.25

-0.2

-0.35

Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (2011) NeuroImage Brodersen, Schofield, Leff, Ong, Lomakina, Buhmann, Stephan (2011) PLoS Comput Biol

Summary

- 1. Foundations. Multivariate methods can uncover and exploit information jointly encoded by multiple voxels. Remember the distinction between prediction and inference, encoding and decoding, univariate and multivariate, and classification and regression.
- 2. Classification. Classification studies typically aim to examine (i) overall discriminability, (ii) the spatial deployment of informative regions, (iii) the temporal evolution of discriminative activity, and (iv) the nature of the distributed activity.
- 3. Multivariate Bayes. Multivariate Bayes offers an alternative scheme that maps multivariate patterns of activity onto brain states within the conventional statistical framework of hierarchical models and their inversion.
- 4. Model-based approaches. Model-based approaches aim to augment previous methods by neurobiological interpretability and are likely to become very fruitful in the future.