Generative embedding for fMRI

Kay H. Brodersen^{1,2}

¹ Department of Computer Science, ETH Zurich, Switzerland

² Department of Economics, University of Zurich, Switzerland

Psychiatric spectrum diseases

Schizophrenia, depression, mania, etc.

- diverse genetic basis, strong geneenvironment interactions
 ⇒ genetically based diagnoses impossible
- multiple pathophysiological mechanisms
 even when symptoms are similar, causes can differ across patients
- variability in treatment response and outcome

Consequences?

need to infer on pathophysiological mechanisms in individual patients!

Klaas E. Stephan

Dissecting diseases into physiologically defined subgroups

Classification approaches by data representation

Model-based analyses

How do patterns of hidden quantities (e.g., connectivity among brain regions) differ between groups?

Structure-based analyses

Which anatomical structures allow us to separate patients and healthy controls?

Activation-based analyses

Which functional differences allow us to separate groups?

From models of pathophysiology to clinical applications

Developing models of (patho)physiological processes

- neuronal: synaptic plasticity, neuromodulation
- computational: learning, decision making

Validation studies in animals & humans

• can models detect experimentally induced changes, e.g., specific changes in synaptic plasticity?

Clinical validation studies & translation

- clinical validation of classifications
- predicting diagnosis, therapeutic response, outcome

Klaas E. Stephan

From models of pathophysiology to clinical applications

Developing models of (patho)physiological processes

- neuronal: synaptic plasticity, neuromodulation
- computational: learning, decision making

Validation studies in animals & humans

 can models detect experimentally induced changes, e.g., specific changes in synaptic plasticity?

Clinical validation studies & translation

- clinical validation of classifications
- predicting diagnosis, therapeutic response, outcome

 $\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)} + \sum_{i=1}^{n} x_j D^{(j)}\right) x + Cu$

Klaas E. Stephan

Colleagues & collaborators

Thomas Schofield University College London

Justin R Chumbley University of Zurich

Cheng Soon Ong

Jean Daunizeau University of Zurich · University College London

Kate Lomakina University of Zurich · ETH Zurich

Joachim M Buhmann

Alexander Leff

Klaas Enno Stephan University of Zurich · University College London

Christoph Mathys University of Zurich · ETH Zurich

Model-based analysis by generative embedding

Brodersen et al. (2011) NeuroImage; Brodersen et al. (2011) PLoS Comput Biol

Choosing a generative model: DCM for fMRI

Summary of the analysis

Example: diagnosing stroke patients

To illustrate our approach, we aimed to distinguish between stroke patients and healthy controls, based on non-lesioned regions involved in speech processing.

Example: diagnosing stroke patients

anatomical regions of interest

Example: diagnosing stroke patients

Univariate analysis: parameter densities

Multivariate analysis: connectional fingerprints

Full Bayesian approach to performance evaluation

Full Bayesian **Full Bayesian** mixed-effects inference mixed-effects inference (beta-binomial model) (normal-binomial model) $p(\alpha^{-},\beta^{-})$ Inv-Wish_{v_0}($\Sigma | \Lambda_0^{-1}$) $p(\alpha^+,\beta^+)$ $\mathcal{N}(\mu|\mu_0,\Sigma/\kappa_0)$ α^{-},β^{-} μ,Σ $\text{Beta}(\mu_j^+ | \alpha^+, \beta^+)$ π_j^+ $\pi_j^ \operatorname{Beta}(\mu_i^- | \alpha^-, \beta^-)$ $\mathcal{N}_2(\rho_j | \mu, \Sigma)$ ρ_j $\operatorname{Bin}(k_i^+|\pi_i^+, n_i^+)$ $\operatorname{Bin}(k_i^-|\pi_i^-, n_i^-)$ $\operatorname{Bin}(k_i^- | \sigma(\rho_{i,2}), n_i^-)$ $\operatorname{Bin}(k_j^+ | \sigma(\rho_{j,1}), n_j^+)$ k_i^+ $k_i^$ $k_i^$ j = 1 ... m

Classification performance

Activation-based analyses

- a anatomical feature selection
- c mass-univariate contrast feature selection
- s locally univariate searchlight feature selection
- p PCA-based dimensionality reduction

Correlation-based analyses

- **m** correlations of regional means
- e correlations of regional eigenvariates
- z Fisher-transformed eigenvariates correlations

Model-based analyses

- o gen.embed., original full model
- gen.embed., less plausible feedforward model
- gen.embed., left hemisphere only
- r gen.embed., right hemisphere only

Biologically less plausible models perform poorly

Generative embedding and DCM

Question 1 – What do the data tell us about hidden processes in the brain?

\Rightarrow compute the posterior

$$p(\theta|y,m) = \frac{p(y|\theta,m)p(\theta|m)}{p(y|m)}$$

Question 2 – Which model is best w.r.t. the observed fMRI data?

 \Rightarrow compute the model evidence

 $p(m|y) \propto p(y|m)p(m)$

 $= \int p(y|\theta,m) p(\theta|m) d\theta$

Question 3 – Which model is best w.r.t. an external criterion?

 \Rightarrow compute the classification accuracy

p(h(y) = x|y)

 $= \iiint p(h(y) = x | y, y_{\text{train}}, x_{\text{train}}) p(y) p(y_{\text{train}}) p(x_{\text{train}}) dy dy_{\text{train}} x_{\text{train}}$

The generative projection

Discriminative features in model space

Discriminative features in model space

Summary: generative embedding for fMRI

- **1** Strong classification performance. Generative embedding exploits the rich discriminative information encoded in 'hidden' quantities, such as coupling parameters.
- 2 Creation of an interpretable feature space. Highdimensional fMRI data are replaced by low-dimensional subject-specific fingerprints with biologically interpretable axes.
- **3 Future applications.** Generative embedding could help dissect spectrum disorders into physiologically defined subgroups.

Outlook: model-based inference on *individual* pathophysiology

