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Univariate approaches are excellent for localizing activations in individual voxels. 

Why multivariate? 

v1 v2 v1 v2 

reward no reward 

* 

n.s. 
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Multivariate approaches can be used to examine responses that are jointly encoded 
in multiple voxels. 

Why multivariate? 

v1 v2 v1 v2 

n.s. 

orange juice apple juice v1 

v2 

n.s. 
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Multivariate approaches can utilize ‘hidden’ quantities such as coupling strengths. 

Why multivariate? 

activity 
𝑧1(𝑡) 

observed BOLD signal 

hidden underlying 
neural activity and 
coupling strengths 

t 

driving input 𝑢1(𝑡) modulatory input 𝑢2(𝑡) 

t 

activity 
𝑧2(𝑡) 

activity 
𝑧3(𝑡) 

signal 
𝑥1(𝑡) 

signal 
𝑥2(𝑡) 

signal 
𝑥3(𝑡) 

Friston, Harrison & Penny (2003) NeuroImage; Stephan & Friston (2007) Handbook of Brain Connectivity; Stephan et al. (2008) NeuroImage 
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Encoding vs. decoding 

context (cause or consequence) 

𝑋𝑡 ∈ ℝ𝑑 
BOLD signal 

𝑌𝑡 ∈ ℝ𝑣  

  condition 
        stimulus 
response 
   prediction error 

encoding model 

decoding model 

𝑔: 𝑋𝑡 → 𝑌𝑡 

ℎ: 𝑌𝑡 → 𝑋𝑡 
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Regression vs. classification 

Regression model 

independent 
variables 
(regressors) 

continuous 
dependent variable 

Classification model 

independent 
variables 
(features) 

categorical 
dependent variable 
(label) 

𝑓 

𝑓 vs. 
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Univariate vs. multivariate models 

BOLD signal 
𝑌𝑡 ∈ ℝ𝑣, v ≫ 1  

context 
𝑋𝑡 ∈ ℝ𝑑  

A univariate model considers a 
single voxel at a time. 

A multivariate model considers 
many voxels at once. 

Spatial dependencies between voxels 
are only introduced afterwards, 
through random field theory. 

BOLD signal 
𝑌𝑡 ∈ ℝ 

context 
𝑋𝑡 ∈ ℝ𝑑  

Multivariate models enable 
inferences on distributed responses 
without requiring focal activations. 
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Prediction vs. inference 

The goal of prediction is to find 
a highly accurate encoding or 
decoding function. 

The goal of inference is to decide 
between competing hypotheses. 

predicting a cognitive 
state using a 

brain-machine 
interface 

predicting a 
subject-specific 

diagnostic status 

predictive density 

𝑝 𝑋𝑛𝑒𝑤 𝑌𝑛𝑒𝑤 , 𝑋, 𝑌 = ∫ 𝑝 𝑋𝑛𝑒𝑤 𝑌𝑛𝑒𝑤 , 𝜃 𝑝 𝜃 𝑋, 𝑌 𝑑𝜃 

marginal likelihood (model evidence) 

𝑝 𝑋 𝑌 = ∫ 𝑝 𝑋 𝑌, 𝜃 𝑝 𝜃 𝑑𝜃 

comparing a model that 
links distributed neuronal 

activity to a cognitive 
state with a model that 

does not 

weighing the 
evidence for 

sparse vs. 
distributed coding 
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Goodness of fit vs. complexity 

Goodness of fit is the degree to which a model explains observed data. 

Complexity is the flexibility of a model (including, but not limited to, its number of 
parameters). 

4 parameters 9 parameters 

Bishop (2007) PRML 

1 parameter 

𝑋 

𝑌 

We wish to find the model that optimally trades off goodness of fit and complexity. 

underfitting overfitting optimal 

truth 
data 
model 
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General Linear Model (GLM) 

• mass-univariate encoding model 

• to regress context onto brain activity 
and find clusters of similar effects 

Dynamic Causal Modelling (DCM) 

• multivariate encoding model 

• to evaluate connectivity 
hypotheses 

Summary of modelling terminology 

Classification 

• multivariate decoding model 

• to predict a categorical context 
label from brain activity 

Multivariate Bayes (MVB) 

• multivariate decoding model 

• to evaluate anatomical and 
coding hypotheses 
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A principled way of designing a classifier would be to adopt a probabilistic approach: 

Constructing a classifier 

Generative classifiers 

use Bayes’ rule to estimate 
𝑝 𝑋𝑡 𝑌𝑡 ∝ 𝑝 𝑌𝑡 𝑋𝑡 𝑝 𝑋𝑡  

• Gaussian Naïve Bayes 
• Linear Discriminant 

Analysis 

Discriminative classifiers 

estimate 𝑝 𝑋𝑡 𝑌𝑡  directly 
without Bayes’ theorem 

• Logistic regression 
• Relevance Vector 

Machine 

Discriminant classifiers 

estimate 𝑓 𝑌𝑡  directly 
 

• Fisher’s Linear 
Discriminant 

• Support Vector Machine 

𝑓 𝑌𝑡 that  𝑘  which maximizes  𝑝 𝑋𝑡 = 𝑘 𝑌𝑡, 𝑋, 𝑌  

In practice, classifiers differ in terms of how strictly they implement this principle. 
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Support vector machine (SVM) 

Vapnik (1999) Springer; Schölkopf et al. (2002) MIT Press 

Nonlinear SVM Linear SVM 

v1 

v2 
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Stages in a classification analysis 

Feature 
extraction 

Classification 
using cross-
validation 

Performance 
evaluation 

Bayesian mixed-
effects inference 

𝑝 = 1 − 
𝑃 𝜋 > 𝜋0 𝑘, 𝑛  

mixed effects 
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We can obtain trial-wise estimates of neural activity by filtering the data with a GLM. 

Feature extraction for trial-by-trial classification 

= 

data  𝑌 design matrix  𝑋 

𝛽1
𝛽2
⋮
𝛽𝑝

 × + 𝑒 

coefficients 

Boxcar 
regressor for 
trial 2 

Estimate of this 
coefficient 
reflects activity 
on trial 2 
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The generalization ability of a classifier can be estimated using a resampling procedure 
known as cross-validation. One example is 2-fold cross-validation: 

Cross-validation 

examples 
1 

2 

3 

99 

100 

? 

training example 

test examples 

folds 

? 

? 

1 

... 

? 

? 

? 

2 

... 
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A more commonly used variant is leave-one-out cross-validation. 

Cross-validation 

examples 
1 

2 

3 

99 

100 

? 

training example 

test example 

? ... 
98 

? 

... 
99 

? 

... 

100 

... 

folds 

? 

1 

... 

? 

2 

... 

performance evaluation 
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     Single-subject study with 𝒏 trials 

The most common approach is to assess how likely the obtained number of correctly 
classified trials could have occurred by chance. 

Performance evaluation 

𝑘 number of correctly classified trials 
𝑛 total number of trials 
𝜋0 chance level (typically 0.5) 
𝐵 binomial cumulative density function 

Binomial test 
𝑝 = 𝑃 𝑋 ≥ 𝑘 𝐻0 = 1 − 𝐵 𝑘|𝑛, 𝜋0   
 
In MATLAB: 

p = 1 - binocdf(k,n,pi_0) 

subject 

- + - - + 

trial 𝑛 

trial 1 0
1
1
1
0
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Performance evaluation 

subject 1 

- + - - + 

trial 𝑛 

trial 1 

population 

0
1
1
1
0

 

subject 2 

1
1
0
1
1

 

subject 3 

0
1
1
0
0

 

subject 4 

1
1
1
1
1

 

subject 𝑚 

… 

… 

0
1
1
1
0
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           Group study with 𝒎 subjects, 𝒏 trials each 

In a group setting, we must account for both within-subjects (fixed-effects) and between-
subjects (random-effects) variance components. 

Performance evaluation 

𝜋  sample mean of sample accuracies 𝜋0 chance level (typically 0.5) 
𝜎 𝑚−1 sample standard deviation 𝑡𝑚−1 cumulative Student’s 𝑡-distribution 

t-test on 
summary statistics 

𝑡 = 𝑚
𝜋 −𝜋0

𝜎 𝑚−1
  

𝑝 = 1 − 𝑡𝑚−1 𝑡   

Binomial test on 
concatenated data 

𝑝 = 1 − 
𝐵 ∑𝑘|∑𝑛, 𝜋0   

Binomial test on 
averaged data 

𝑝 = 1 − 

𝐵
1

𝑚
∑𝑘|

1

𝑚
∑𝑛, 𝜋0   

Bayesian mixed-
effects inference 

𝑝 = 1 − 
𝑃 𝜋 > 𝜋0 𝑘, 𝑛  

fixed effects random effects fixed effects mixed effects 

Brodersen, Mathys, Chumbley, Daunizeau, Ong, Buhmann, Stephan (under review) 

available for 
download soon 
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Searchlight approach 
 
 
 
 
 
 
 
 
 

A sphere is passed across the brain. At each 
location, the classifier is evaluated using only 
the voxels in the current sphere → map of t-
scores. 

Whole-brain approach 
 
 
 
 
 
 
 
 
 

A constrained classifier is trained on whole-
brain data. Its voxel weights are related to 
their empirical null distributions using a 
permutation test → map of t-scores. 

Which brain regions are jointly informative of a cognitive state of interest? 

Spatial deployment of informative regions 

Nandy & Cordes (2003) MRM 
Kriegeskorte et al. (2006) PNAS 

Mourao-Miranda et al. (2005) NeuroImage 
Lomakina et al. (in preparation) 
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Summary: research questions for classification 

Temporal evolution of discriminability Model-based classification 

accuracy 

50 % 

100 % 

within-trial time 

Accuracy rises above 
chance 

Participant indicates 
decision 

Overall classification accuracy Spatial deployment of discriminative regions 

80% 

55% 

accuracy 

50 % 

100 % 

classification task 

Truth 
or 

lie? 

Left or right 
button? 

Healthy or 
ill? 

Pereira et al. (2009) NeuroImage, Brodersen et al. (2009) The New Collection 

{ group 1, 
group 2 } 
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Multivariate Bayes 

Mike West 

SPM brings multivariate analyses into the conventional inference framework of 
Bayesian hierarchical models and their inversion. 
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Multivariate Bayes 

some cause or 
consequence 

decoding model 

Multivariate analyses in SPM rest on the central tenet that inferences about how 
the brain represents things reduce to model comparison. 

vs. 

sparse coding in 
orbitofrontal cortex 

distributed coding in  
prefrontal cortex 

To make the ill-posed regression problem tractable, MVB uses a prior on voxel 
weights. Different priors reflect different coding hypotheses. 
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From encoding to decoding 

Encoding model: GLM Decoding model: MVB 

𝑌 

= 𝑋𝛽 

= 𝑇𝐴 + 𝐺𝛾 + 𝜀 
𝛾 

𝜀 

𝛽 

𝛼 𝑋 

𝐴 

𝑌 

= 𝐴𝛼 

= 𝑇𝐴 + 𝐺𝛾 + 𝜀 

𝑋 

𝐴 

𝑌 = 𝑇𝑋𝛽 + 𝐺𝛾 + 𝜀 𝑇𝑋 = 𝑌𝛼 − 𝐺𝛾𝛼 − 𝜀𝛼 

𝛾 

𝜀 

In summary: In summary: 
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Specifying the prior for MVB 

1st level – spatial coding hypothesis 𝑈 

2nd level – pattern covariance structure Σ 

𝑝 𝜂 = 𝒩 𝜂 0, Σ  

Σ = ∑ 𝜆𝑖𝑠
𝑖

𝑖   

𝜂 × 

𝑛 
voxels 

𝑢  patterns 

Thus:  𝑝 𝛼|𝜆 = 𝒩𝑛 𝛼 0, 𝑈Σ𝑈𝑇    and    𝑝 𝜆 = 𝒩 𝜆 𝜋, Π−1  

𝑈 𝑈 𝑈 Voxel 3 is allowed to 
play a role, but only if 
its neighbours play 
similar roles. 

Voxel 2 is 
allowed to play a 
role. 
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Inverting the model 

Partition #1 

Partition #2 

Partition #3 
(optimal) 

Σ = 𝜆1 × 

Σ = 𝜆1 × 

Σ = 𝜆1 × 

+𝜆2 × 

+𝜆2 × +𝜆3 × 

Model inversion involves 
finding the posterior 
distribution over voxel 
weights 𝛼. 

In MVB, this includes a 
greedy search for the 
optimal covariance 
structure that governs 
the prior over 𝛼. 

subset 𝑠 1  subset 𝑠 2  

subset 𝑠 1  subset 𝑠 2  subset 𝑠 3  

subset 𝑠 1  
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MVB can be illustrated using SPM’s attention-
to-motion example dataset. 

 

This dataset is based on a simple block 
design. There are three experimental factors: 

 photic – display shows random dots 

 motion – dots are moving 

 attention – subjects asked to pay attention 

Example: decoding motion from visual cortex 

sc
an

s 

photic motion attention const 

Buechel & Friston 1999 Cerebral Cortex 
Friston et al. 2008 NeuroImage 
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Multivariate Bayes in SPM 

Step 1 
After having specified and estimated 
a model, use the Results button. 

Step 2 
Select the contrast to be decoded. 
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Multivariate Bayes in SPM 

Step 3 
Pick a region of interest. 
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Multivariate Bayes in SPM 

Step 4 
Multivariate Bayes can be 
invoked from within the 
Multivariate section. 

Step 5 
Here, the region of 
interest is 
specified as a 
sphere around the 
cursor. The spatial 
prior implements 
a sparse coding 
hypothesis. 
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Multivariate Bayes in SPM 

Step 6 
Results can be displayed using the BMS 
button. 
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Observations vs. predictions 

𝑹𝑿𝑐 

(m
o

ti
o

n
) 
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Model evidence and voxel weights 

log evidence = 3 
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MVB may outperform 
conventional point 
classifiers when using a 
more appropriate coding 
hypothesis. 

Using MVB for point classification 

Support Vector 

Machine 
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Summary: research questions for MVB 

How does the brain represent things? 

Evaluating competing coding hypotheses 

Where does the brain represent things? 

Evaluating competing anatomical hypotheses 
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Overview 

1 Introduction 
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3 Multivariate Bayes 

4 Model-based analyses 
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Classification approaches by data representation 

Model-based 
classification 

How do patterns of 
hidden quantities (e.g., 
connectivity among brain 
regions) differ between groups? 

Structure-based 
classification 

Which anatomical 
structures allow us to 
separate patients and 
healthy controls? 

Activation-based 
classification 

Which functional 
differences allow us to 
separate groups? 
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Generative embedding for model-based classification 

Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (2011) NeuroImage 
Brodersen, Schofield, Leff, Ong, Lomakina, Buhmann, Stephan (2011) PLoS Comput Biol 

step 2 — 
embedding 

step 1 — 
modelling 

measurements from 
an individual subject 

subject-specific 
generative model 

subject representation in 
model-based feature space 

A → B 

A → C 

B → B 

B → C 

A 

C 
B 

step 3 — 
classification 

A 

C 
B 

jointly discriminative 
connection strengths? 

step 5 — 
interpretation 

classification 
model 

1 

0 

discriminability of 
groups? 

ac
cu

ra
cy

 
step 4 — 
evaluation 
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Example: diagnosing stroke patients 

anatomical 
regions of interest 

y = –26 mm 
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Example: diagnosing stroke patients 

MGB 

PT 

HG 
(A1) 

MGB 

PT 

HG 
(A1) 

stimulus input 

L R 
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Multivariate analysis: connectional fingerprints 

patients 
controls 
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Dissecting diseases into physiologically distinct subgroups 

-10

0

10

-0.5

0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-10

0
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0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

gen
erative 

em
b

e
d

d
in

g 

L.
H

G
 →

 L
.H

G
 

V
o

xe
l (

6
4

,-
2

4
,4

) 
m

m
 

L.MGB → L.MGB Voxel (-42,-26,10) mm 
Voxel (-56,-20,10) mm R.HG → L.HG 

controls 

patients 

Voxel-based contrast space Model-based parameter space 

classification accuracy 
(using all 23 model parameters) 

98% 

classification accuracy 
(using all voxels in the regions of interest) 

75% 
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Discriminative features in model space 

MGB 

PT 

HG 
(A1) 

MGB 

PT 

HG 
(A1) 

stimulus input 

L R 
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Discriminative features in model space 

MGB 

PT 

HG 
(A1) 

MGB 

PT 

HG 
(A1) 

stimulus input 

L R 

highly discriminative 
somewhat discriminative 
not discriminative 
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Question 1 – What do the data tell us about hidden processes in the brain? 

 compute the posterior 

𝑝 𝜃 𝑦,𝑚 =
𝑝 𝑦 𝜃,𝑚 𝑝 𝜃 𝑚

𝑝 𝑦 𝑚
  

Generative embedding and DCM 

? 

? 

Question 2 – Which model is best w.r.t. the observed fMRI data? 

 compute the model evidence 

𝑝 𝑚 𝑦 ∝ 𝑝 𝑦 𝑚 𝑝(𝑚)  

= ∫ 𝑝 𝑦 𝜃,𝑚 𝑝 𝜃 𝑚 𝑑𝜃  

Question 3 – Which model is best w.r.t. an external criterion? 

 compute the classification accuracy 

𝑝 ℎ 𝑦 = 𝑥 𝑦   

= 𝑝 ℎ 𝑦 = 𝑥 𝑦, 𝑦train, 𝑥train  𝑝 𝑦  𝑝 𝑦train  𝑝 𝑥train  𝑑𝑦 𝑑𝑦train 𝑥train  

{ patient, 
control } 
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Summary 

 Classification 
• to assess whether a cognitive state is 

linked to patterns of activity 
• to assess the spatial deployment of 

discriminative activity 

 Multivariate Bayes 
• to evaluate competing anatomical 

hypotheses 
• to evaluate competing coding hypotheses 

 Model-based analyses 
• to assess whether groups differ in terms of 

patterns of connectivity 
• to generate new grouping hypotheses 


