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Why multivariate?

Univariate approaches are excellent for localizing activations in individual voxels.
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Why multivariate?

Multivariate approaches can be used to examine responses that are jointly encoded
in multiple voxels.

| n.s.

orange juice apple juice




Why multivariate?

Multivariate approaches can utilize ‘hidden’ quantities such as coupling strengths.
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Encoding vs. decoding

v v \
condition encoding model
stimulus g: X, - Y,
response
prediction error BRESIInE model
h: Yt - Xt
context (cause or consequence) BOLD signal

X, € R4 Y, € RY




Regression vs. classification

Regression model
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Univariate vs. multivariate models

A univariate model considers a
single voxel at a time.
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context BOLD signal
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Spatial dependencies between voxels
are only introduced afterwards,
through random field theory.

A multivariate model considers
many voxels at once.

NS L
context BOLD signal
X, € R Y; ERY, v> 1

Multivariate models enable
inferences on distributed responses
without requiring focal activations.




Prediction vs. inference

The goal of prediction is to find
a highly accurate encoding or
decoding function.
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predicting a cognitive
state using a
brain-machine
interface

predicting a
subject-specific
diagnostic status

predictive density
P Xnew!Ynew, X,Y) = fp(Xnewlynew» )p(O1X,Y)do

The goal of inference is to decide
between competing hypotheses.

comparing a model that weighing the
links distributed neuronal evidence for
activity to a cognitive sparse vs.

state with a model that
does not

distributed coding

marginal likelihood (model evidence)
p(X|Y) = [ p(X|Y,0)p(0)d6
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Goodness of fit vs. complexity

Goodness of fit is the degree to which a model explains observed data.

Complexity is the flexibility of a model (including, but not limited to, its number of
parameters).
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We wish to find the model that optimally trades off goodness of fit and complexity.

Bishop (2007) PRML
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Summary of modelling terminology

General Linear Model (GLM)
* mass-univariate encoding model

* to regress context onto brain activity
and find clusters of similar effects

Dynamic Causal Modelling (DCM)

* multivariate encoding model

* to evaluate connectivity
hypotheses

Classification

* multivariate decoding model

* to predict a categorical context
label from brain activity

Multivariate Bayes (MVB)

* multivariate decoding model

* to evaluate anatomical and
coding hypotheses
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Constructing a classifier

A principled way of designing a classifier would be to adopt a probabilistic approach:

Y, === f w=fp that k which maximizes p(X; = k|Y;, X,Y)

In practice, classifiers differ in terms of how strictly they implement this principle.

Generative classifiers Discriminative classifiers Discriminant classifiers

use Bayes’ rule to estimate estimate p(X,|Y;) directly estimate f(Y;) directly
p(X:|Y:) < p(Ye | X)) p(Xy) without Bayes’ theorem

* Gaussian Naive Bayes * Logistic regression * Fisher’s Linear
* Linear Discriminant * Relevance Vector Discriminant
Analysis Machine * Support Vector Machine |
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Support vector machine (SVM)

Linear SVM

Vapnik (1999) Springer; Scholkopf et al. (2002) MIT Press

Nonlinear SVM
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Stages in a classification analysis
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Feature extraction for trial-by-trial classification

We can obtain trial-wise estimates of neural activity by filtering the data with a GLM.

data Y design matrix X
- coefficients
Boxcar gl
regressor for 2
p— trial 2 X . + e
b E;timaie of this
coefficient
; - reflects activity
; on trial 2

;
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Cross-validation

The generalization ability of a classifier can be estimated using a resampling procedure
known as cross-validation. One example is 2-fold cross-validation:
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Cross-validation

A more commonly used variant is leave-one-out cross-validation.

examples
1 . . . . training example
2 . . . . test example
3 2 A @
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Performance evaluation

¥ Single-subject study with n trials

The most common approach is to assess how likely the obtained number of correctly
classified trials could have occurred by chance.

subject . .
Binomial test

p =P(X = k|Hy) = 1— B(k|n,m)

In MATLAB:
p =1 - binocdf(k,n,pi_0)

' ' k  number of correctly classified trials
n  total number of trials

my chance level (typically 0.5)

B binomial cumulative density function
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Performance evaluation
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Performance evaluation

i%i Group study with m subjects, n trials each

In a group setting, we must account for both within-subjects (fixed-effects) and between-

subjects (random-effects) variance components.
available for
download soon

Binomial test on Binomial test on t-test on Bayesian mixed-
concatenatedgata summary statistics effects inference
p = 1 —_ = m?—ﬂ:o p — 1 —

B kWn, L P(mr > mylk,n)

—=  fixed effects }—/ — fixed effects }—/ —== random effects }—} _| mixed effects }—)

T sample mean of sample accuracies 7 chance level (typically 0.5)
O0m-1 Sample standard deviation tm—1 cumulative Student’s t-distribution

Brodersen, Mathys, Chumbley, Daunizeau, Ong, Buhmann, Stephan (under review)
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Spatial deployment of informative regions

Which brain regions are jointly informative of a cognitive state of interest?

Searchlight approach

Whole-brain approach

A sphere is passed across the brain. At each
location, the classifier is evaluated using only
the voxels in the current sphere = map of t-
scores.

A constrained classifier is trained on whole-
brain data. Its voxel weights are related to
their empirical null distributions using a
permutation test = map of t-scores.

Nandy & Cordes (2003) MRM
Kriegeskorte et al. (2006) PNAS

Mourao-Miranda et al. (2005) Neurolmage
Lomakina et al. (in preparation)
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Summary: research questions for classification

Overall classification accuracy

accuracy
100 %

50% |

classification task

Temporal evolution of discriminability

accuracy Participant indicates
100 % decision

50 %

Accuracy rises above
chance

within-trial time

Spatial deployment of discriminative regions

V.

Model-based classification

<:> {group 1,
group 2 }

Pereira et al. (2009) Neurolmage, Brodersen et al. (2009) The New Collection
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Multivariate Bayes

SPM brings multivariate analyses into the conventional inference framework of

Bayesian hierarchical models and their inversion.

HOHO HOHO HOHO HOHO HOHO
APRIORIUS PRAGHATICUS FREQUENTISTUS SAPIENS BAYESIANIS

Mike West
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Multivariate Bayes

Multivariate analyses in SPM rest on the central tenet that inferences about how

the brain represents things reduce to model comparison.

some cause or
consequence

sparse coding in distributed coding in
orbitofrontal cortex prefrontal cortex

To make the ill-posed regression problem tractable, MVB uses a prior on voxel
weights. Different priors reflect different coding hypotheses.
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From encoding to decoding

Encoding model: GLM

2 =TA+ Gy +¢

In summary:

Y =TXB + Gy + ¢

Decoding model: MVB

=TA+ Gy +¢

In summary:

TX =Ya— Gya — ca

28



Specifying the prior for MVB

1%t level — spatial coding hypothesis U

U patterns

Voxel 2 is
allowed to play a

Voxel 3 is allowed to
play a role, but only if
its neighbours play

similar roles.

spatial vectors smooth vectors support vectors

2"d |evel — pattern covariance structure X

p(n) = N(®l0,%)
DEDWVIE

Thus: p(a|d) = N, («|0,UZUT) and p(Q) = N(A|xr,171)
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Inverting the model

Model inversion involves
finding the posterior
distribution over voxel
weights «.

In MVB, this includes a
greedy search for the
optimal covariance
structure that governs
the prior over a.

L —

- -
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Example: decoding motion from visual cortex

photic motion attention const

MVB can be illustrated using SPM’s attention-
to-motion example dataset.

This dataset is based on a simple block
design. There are three experimental factors:

o photic  —display shows random dots

o motion —dots are moving

o0 attention — subjects asked to pay attention

Scans

Buechel & Friston 1999 Cerebral Cortex
Friston et al. 2008 Neurolmage
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Multivariate Bayes in SPM

ety | oot | vt w
et o] i s

Step 1
After having specified and estimated
a model, use the Results button.

F¥F typal name

Step 2

Select the contrast to be decoded.
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Multivariate Bayes in SPM

Step 3

File Edit View |Insert Tools Desktop Window 5FM Figure Help PICka region Ofinterest.

contrast(s)
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Multivariate Bayes in SPM

SPM8/(kbroders): SPM{F}: Results
Design  Contrasts

Step 4

Multivariate Bayes can be
invoked from within the
Multivariate section.

SPMB2 (kbroders): SPM{F}: Results — =

Design Contrasts

f f I1' w3 E 31‘;..

curren duster| _mutivarise Baes | overlays.
smallvotume | 5| peotee | __save ]

el sl

|

Step 5

Here, the region of
interest is
specified as a
sphere around the
cursor. The spatial
prior implements

a sparse coding
hypothesis.
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Multivariate Bayes in SPM

) SPM8 (kbroders): SPM{F}: Resuits

HEL

Design  Contrasts
name motionF
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clear| exit | J

Step 6
Results can be displayed using the BMS
button.

scans
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Observations vs. predictions
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Model evidence and voxel weights
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percent correct

Using MVB for point classification

70
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Classification performance
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MVB (sparse vectors)

—

MVB (support vectors)

Support Vector
Machine

1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8
C-hyperparameter (SVM)

MVB may outperform
conventional point
classifiers when using a
more appropriate coding
hypothesis.
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Summary: research questions for MVB

Where does the brain represent things?

Evaluating competing anatomical hypotheses

log-evigence
Model comparison

60 T T T
' ' |
' ] |

-10

V5/MT PFC null

How does the brain represent things?

Evaluating competing coding hypotheses

log-evidence
Model comparison
a0 : : 1 !

' ' " ' '
I} -\ A A ke
' ' 0 ' '

spatial smooth svd svm null
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Classification approaches by data representation

Model-based o
classification 1939

N
" ad
' 4

4}:

How do patterns of
hidden quantities (e.g.,
connectivity among brain
regions) differ between groups?

Activation-based
Structure-based classification

classification Which functional

Which anatomical 3 differences allow us to
structures allow us to separate groups?
separate patients and

healthy controls?
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Generative embedding for model-based classification

step1 — (Aﬁ step 2 — A->B
modelling embedding B ASC
?( ‘) / B->B
B—>C
measurements from subject-specific subject representation in
an individual subject generative model model-based feature space
: 1 . .
A > \\\ ° [ I ]
step 5 — S step 4 — N ’. . step 3 —
O mterpretation 3 evaluation RN classification
o I o o, \\\ .
t - | ® T I * e r
O | B
jointly discriminative discriminability of classification
connection strengths? groups? model

Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (2011) Neurolmage
Brodersen, Schofield, Leff, Ong, Lomakina, Buhmann, Stephan (2011) PLoS Comput Biol
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Example: diagnosing stroke patients

anatomical
regions of interest
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Example: diagnosing stroke patients







Dissecting diseases into physiologically distinct subgroups

Voxel-based contrast space Model-based parameter space
04 - | - -0.15 - o |
S 031 | %. | g— g -0.2 |
— —T — o o O T
< 02- | * o S i -0.25 |
o l oq @ N /‘
2o et | o N
2 0\// | ~ | M patients 035 |
> X - M controls |
— -10 0.5
-0.1 -0.4
-0.5 -0.4
Voxel (-56,-20,10) mm 05 R.HG - L.HG
Voxel (‘42,‘26,10) mm 0.5 10 LMGB 9 LMGB e
classification accuracy classification accuracy
(using all voxels in the regions of interest) (using all 23 model parameters)
75% 98%
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Discriminative features in model space




Discriminative features in model space

o—o |
5 @

stimulus input

B highly discriminative
| somewhat discriminative
not discriminative
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Generative embedding and DCM

Question 1 — What do the data tell us about hidden processes in the brain?

= compute the posterior g ?

p(y18,m)p(6|m)
p(ylm)

p(@ly,m) =

Question 2 — Which model is best w.r.t. the observed fMRI data?
= compute the model evidence

p(mly) o« p(ylm)p(m)

= [ p(y16, m)p(6lm)d6

Question 3 — Which model is best w.r.t. an external criterion?

= compute the classification accuracy

p(h(y) = xly)
- fffp(h(y) = x|y, ytrain'xtrain) r(y) p(ytrain) P(xtrain) dy dYtrain Xtrain

{ patient,
control }
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Classification

* to assess whether a cognitive state is
linked to patterns of activity

* to assess the spatial deployment of
discriminative activity

Multivariate Bayes

* to evaluate competing anatomical
hypotheses

* to evaluate competing coding hypotheses

Model-based analyses

* to assess whether groups differ in terms of
patterns of connectivity

* to generate new grouping hypotheses
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