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Psychiatric spectrum diseases

Schizophrenia, depression, mania, etc.

o genetically based diagnoses impossible
(diverse genetic basis, strong gene-
environment interactions)

o even when symptoms are similar, causes
can differ across patients (multiple
pathophysiological mechanisms)

o large variability in treatment response
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Dissecting diseases into physiologically defined subgroups

voxel-based activity space model-based parameter space
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Classification approaches by data representation

Model-based
analyses

How do patterns of

hidden quantities (e.g.,
connectivity among brain
regions) differ between groups?

Structure-based
analyses

Which anatomical
structures allow us to
separate patients and
healthy controls?

Activation-based

analyses

Which functional

differences allow us to

separate groups?




From models of pathophysiology to clinical applications
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Clinical validation studies & translation s W

* clinical validation of classifications 0351
* predicting diagnosis, therapeutic response, outcome
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Univariate vs. multivariate models

A univariate model considers a
single voxel at a time.
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Spatial dependencies between voxels
are only introduced afterwards,
through random field theory.

A multivariate model considers
many voxels at once.
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Multivariate models enable
inferences on distributed responses
without requiring focal activations.




Prediction vs. inference

The goal of prediction is to find
a highly accurate encoding or
decoding function.

Brain Cross-Sections
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predicting a cognitive
state using a
brain-machine
interface

predicting a
subject-specific
diagnostic status

predictive density
P Xnew!Ynew, X,Y) = fp(Xnewlynew» )p(O1X,Y)do

The goal of inference is to decide
between competing hypotheses.

comparing a model that weighing the
links distributed neuronal evidence for
activity to a cognitive sparse vs.

state with a model that
does not

distributed coding

marginal likelihood (model evidence)
p(X|Y) = [ p(X|Y,0)p(0)d6




Goodness of fit vs. complexity

Goodness of fit is the degree to which a model explains observed data.

Complexity is the flexibility of a model (including, but not limited to, its number of
parameters).
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We wish to find the model that optimally trades off goodness of fit and complexity.

Bishop (2007) PRML




Constructing a classifier

A principled way of designing a classifier would be to adopt a probabilistic approach:

Y, === f w=fp that k which maximizes p(X; = k|Y;, X,Y)

In practice, classifiers differ in terms of how strictly they implement this principle.

Generative classifiers Discriminative classifiers Discriminant classifiers

use Bayes’ rule to estimate estimate p(X,|Y;) directly estimate f(Y;) directly
p(X:|Y:) < p(Ye | X)) p(Xy) without Bayes’ theorem

* Gaussian Naive Bayes * Logistic regression * Fisher’s Linear
* Linear Discriminant * Relevance Vector Discriminant
Analysis Machine * Support Vector Machine |
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Support vector machine (SVM)

Linear SVM

Vapnik (1999) Springer; Scholkopf et al. (2002) MIT Press

Nonlinear SVM
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Model-based analysis by generative embedding
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Choosing a generative model: DCM for fMRI

BOLD signal haemodynamic forward model
iclf?:)l x =9g(z6h)
signal signal
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Friston, Harrison & Penny (2003) Neurolmage
Stephan & Friston (2007) Handbook of Brain Connectivity
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Summary of the analysis
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Example: diagnosis of moderate aphasia
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Example: diagnosing stroke patients

To illustrate our approach, we aimed to distinguish between stroke patients and
healthy controls, based on non-lesioned regions involved in speech processing.
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Example: diagnosing stroke patients

anatomical
regions of interest
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Example: diagnosing stroke patients




Univariate analysis: parameter densities
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Full Bayesian approach to performance evaluation

Beta-binomial model

Brodersen et al. (under review)

Beta(uj_ la~, ,B‘)

Bin(kj_ |T[j_, nj_)

Normal-binomial model

Inv-Wish,,| (1A% N (1| po, 2/ o)

(o)

Bin(k7|o(p;.),17) Bin(k; | o(p;2). 1)

__________________________

21



Classification performance

balanced accuracy
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Activation-based analyses

a anatomical feature selection

C mass-univariate contrast feature selection

s locally univariate searchlight feature selection
p PCA-based dimensionality reduction

Correlation-based analyses

m correlations of regional means

e correlations of regional eigenvariates

z Fisher-transformed eigenvariates correlations

Model-based analyses

o gen.embed., original full model

f gen.embed,, less plausible feedforward model
| gen.embed., left hemisphere only

r gen.embed., right hemisphere only
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Biologically less plausible models perform poorly

auditory stimuli auditory stimuli auditory stimuli
feedforward connections only left hemisphere only right hemisphere only
accuracy: 77% accuracy: 81% accuracy: 59%
J
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The generative projection

|
Voxel-based contrast space Model-based parameter space
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Discriminative features in model space




Discriminative features in model space
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Generative embedding and DCM

Question 1 — What do the data tell us about hidden processes in the brain?

= compute the posterior

p(y18,m)p(6|m)
p(ylm)

p(@ly,m) =

Question 2 — Which model is best w.r.t. the observed fMRI data?
= compute the model evidence

p(mly) o« p(ylm)p(m)

= [ p(y16, m)p(6lm)d6

Question 3 — Which model is best w.r.t. an external criterion?

= compute the classification accuracy

p(h(y) = xly)
. fffp(h(y) = x|y, ytrain'xtrain) r(y) p(Ytrain) p(xtrain) dy dYtrain A%train

{ patient,
control }
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Model-based classification using DCM

model-based
classification

e

=

<:> {group1l,
group 2}

activation-based
classification

structure-based
classification

model selection

Eé(‘}/ Vs.

inference on
model
parameters
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Model-based inference on individual pathophysiology

@ model of neuronal (patho)physiology

@ application to brain activity data @ diagnostic classification
from individual patients :
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