Model-based analysis of disease states of the brain using generative embedding

Kay H. Brodersen^{1,2}

¹ Translational Neuromodeling Unit (TNU), Department of Biomedical Engineering, University of Zurich & ETH Zurich
² Machine Learning Laboratory, Department of Computer Science, ETH Zurich

Psychiatric spectrum diseases

Schizophrenia, depression, mania, etc.

- genetically based diagnoses impossible (diverse genetic basis, strong geneenvironment interactions)
- even when symptoms are similar, causes can differ across patients (multiple pathophysiological mechanisms)
- large variability in treatment response

Consequences

need to infer on pathophysiological mechanisms in individual patients!

Dissecting diseases into physiologically defined subgroups

Classification approaches by data representation

Model-based analyses

How do patterns of hidden quantities (e.g., connectivity among brain regions) differ between groups?

Structure-based analyses

Which anatomical structures allow us to separate patients and healthy controls?

Activation-based analyses

Which functional differences allow us to separate groups?

From models of pathophysiology to clinical applications

Developing models of (patho)physiological processes

- neuronal: synaptic plasticity, neuromodulation
- computational: learning, decision making

Validation studies in animals & humans

 can models detect experimentally induced changes, e.g., specific changes in synaptic plasticity?

Clinical validation studies & translation

- clinical validation of classifications
- predicting diagnosis, therapeutic response, outcome

Klaas E. Stephan

Colleagues & collaborators

Thomas Schofield University College London

Justin R Chumbley University of Zurich

Cheng Soon Ong National ICT Australia · University of Melbourne

Jean Daunizeau ICM Paris · University College London

Kate Lomakina University of Zurich · ETH Zurich

Joachim M Buhmann

Alexander Leff

Klaas Enno Stephan University of Zurich · ETH Zurich · UCL

Christoph Mathys University of Zurich · ETH Zurich

A univariate model considers a single voxel at a time.

Spatial dependencies between voxels are only introduced afterwards, through random field theory. A multivariate model considers many voxels at once.

Multivariate models enable inferences on distributed responses without requiring focal activations. The goal of **prediction** is to find a highly accurate encoding or decoding function.

The goal of **inference** is to decide between competing hypotheses.

predicting a cognitive state using a brain-machine interface predicting a subject-specific diagnostic status

comparing a model that links distributed neuronal activity to a cognitive state with a model that does not

weighing the evidence for sparse vs. distributed coding

predictive density

 $p(X_{new}|Y_{new}, X, Y) = \int p(X_{new}|Y_{new}, \theta) p(\theta|X, Y) d\theta$

marginal likelihood (model evidence) $p(X|Y) = \int p(X|Y,\theta)p(\theta)d\theta$ **Goodness of fit** is the degree to which a model explains observed data.

Complexity is the flexibility of a model (including, but not limited to, its number of parameters).

We wish to find the model that optimally trades off goodness of fit and complexity.

Bishop (2007) PRML

Constructing a classifier

A principled way of designing a classifier would be to adopt a probabilistic approach:

In practice, classifiers differ in terms of how strictly they implement this principle.

Generative classifiers

use Bayes' rule to estimate $p(X_t|Y_t) \propto p(Y_t|X_t)p(X_t)$

- Gaussian Naïve Bayes
- Linear Discriminant Analysis

Discriminative classifiers

estimate $p(X_t|Y_t)$ directly without Bayes' theorem

- Logistic regression
- Relevance Vector Machine

Discriminant classifiers

estimate $f(Y_t)$ directly

- Fisher's Linear Discriminant
- Support Vector Machine

Support vector machine (SVM)

Vapnik (1999) Springer; Schölkopf et al. (2002) MIT Press

Model-based analysis by generative embedding

Brodersen et al. (2011) NeuroImage; Brodersen et al. (2011) PLoS Comput Biol

Choosing a generative model: DCM for fMRI

Summary of the analysis

Example: diagnosis of moderate aphasia

Example: diagnosing stroke patients

To illustrate our approach, we aimed to distinguish between stroke patients and healthy controls, based on non-lesioned regions involved in speech processing.

Example: diagnosing stroke patients

anatomical regions of interest

Example: diagnosing stroke patients

Univariate analysis: parameter densities

Multivariate analysis: connectional fingerprints

Full Bayesian approach to performance evaluation

Classification performance

Activation-based analyses

- a anatomical feature selection
- c mass-univariate contrast feature selection
- s locally univariate searchlight feature selection
- p PCA-based dimensionality reduction

Correlation-based analyses

- **m** correlations of regional means
- e correlations of regional eigenvariates
- **z** Fisher-transformed eigenvariates correlations

Model-based analyses

- o gen.embed., original full model
- gen.embed., less plausible feedforward model
- gen.embed., left hemisphere only
- r gen.embed., right hemisphere only

Biologically less plausible models perform poorly

The generative projection

Discriminative features in model space

Discriminative features in model space

Generative embedding and DCM

Question 1 – What do the data tell us about hidden processes in the brain?

\Rightarrow compute the posterior

$$p(\theta|y,m) = \frac{p(y|\theta,m)p(\theta|m)}{p(y|m)}$$

Question 2 – Which model is best w.r.t. the observed fMRI data?

 \Rightarrow compute the model evidence

 $p(m|y) \propto p(y|m)p(m)$

 $= \int p(y|\theta,m) p(\theta|m) d\theta$

Question 3 – Which model is best w.r.t. an external criterion?

 \Rightarrow compute the classification accuracy

p(h(y) = x|y)

 $= \iiint p(h(y) = x | y, y_{\text{train}}, x_{\text{train}}) p(y) p(y_{\text{train}}) p(x_{\text{train}}) dy dy_{\text{train}} dx_{\text{train}}$

Model-based classification using DCM

activation-based classification

structure-based classification

inference on model parameters

Model-based inference on *individual* pathophysiology

