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Schizophrenia, depression, mania, etc. 

 genetically based diagnoses impossible 
(diverse genetic basis, strong gene-
environment interactions) 

 even when symptoms are similar, causes 
can differ across patients (multiple 
pathophysiological mechanisms) 

 large variability in treatment response 

Psychiatric spectrum diseases 

Consequences 
need to infer on pathophysiological 
mechanisms in individual patients! 
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Dissecting diseases into physiologically defined subgroups 
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L.MGB → L.MGB Voxel (-42,-26,10) mm 
Voxel (-56,-20,10) mm R.HG → L.HG 

type 2 

type 1 

voxel-based activity space model-based parameter space 

Brodersen et al. (2011) PLoS Comput Biol 
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Model-based 
analyses 

How do patterns of 
hidden quantities (e.g., 
connectivity among brain 
regions) differ between groups? 

Classification approaches by data representation 

Structure-based 
analyses 

Which anatomical 
structures allow us to 
separate patients and 
healthy controls? 

Activation-based 
analyses 

Which functional 
differences allow us to 
separate groups? 
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From models of pathophysiology to clinical applications 

 

 

 

Developing models of (patho)physiological processes 

• neuronal:  synaptic plasticity, neuromodulation 
• computational:  learning, decision making 

Validation studies in animals & humans 

• can models detect experimentally induced changes, 
e.g., specific changes in synaptic plasticity? 

Clinical validation studies & translation 

• clinical validation of classifications 
• predicting diagnosis, therapeutic response, outcome 

x1 x2

x3

CuxDxBuA
dt

dx n

j

j

j

m

i

i

i 












 

 1

)(

1

)(

u1

u2

-10

0

10

-0.5

0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-10

0

10

-0.5

0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

g
e
n

e
ra

tive
 

e
m

b
e
d

d
in

g

L
.H

G
 

L
.H

G

V
o

x
e
l (

6
4
,-

2
4
,4

) 
m

m

L.MGB  L.MGB
Voxel (-42,-26,10) mm

Voxel (-56,-20,10) mm R.HG L.HG

controls
patients

Voxel-based feature space Generative score space

patients 
controls 

Klaas E. Stephan 
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Univariate vs. multivariate models 

BOLD signal 
𝑌𝑡 ∈ ℝ𝑣, v ≫ 1  

context 
𝑋𝑡 ∈ ℝ𝑑  

A univariate model considers a 
single voxel at a time. 

A multivariate model considers 
many voxels at once. 

Spatial dependencies between voxels 
are only introduced afterwards, 
through random field theory. 

BOLD signal 
𝑌𝑡 ∈ ℝ 

context 
𝑋𝑡 ∈ ℝ𝑑  

Multivariate models enable 
inferences on distributed responses 
without requiring focal activations. 
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Prediction vs. inference 

The goal of prediction is to find 
a highly accurate encoding or 
decoding function. 

The goal of inference is to decide 
between competing hypotheses. 

predicting a cognitive 
state using a 

brain-machine 
interface 

predicting a 
subject-specific 

diagnostic status 

predictive density 

𝑝 𝑋𝑛𝑒𝑤 𝑌𝑛𝑒𝑤 , 𝑋, 𝑌 = ∫ 𝑝 𝑋𝑛𝑒𝑤 𝑌𝑛𝑒𝑤 , 𝜃 𝑝 𝜃 𝑋, 𝑌 𝑑𝜃 

marginal likelihood (model evidence) 

𝑝 𝑋 𝑌 = ∫ 𝑝 𝑋 𝑌, 𝜃 𝑝 𝜃 𝑑𝜃 

comparing a model that 
links distributed neuronal 

activity to a cognitive 
state with a model that 

does not 

weighing the 
evidence for 

sparse vs. 
distributed coding 
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Goodness of fit vs. complexity 

Goodness of fit is the degree to which a model explains observed data. 

Complexity is the flexibility of a model (including, but not limited to, its number of 
parameters). 

4 parameters 9 parameters 

Bishop (2007) PRML 

1 parameter 

𝑋 

𝑌 

We wish to find the model that optimally trades off goodness of fit and complexity. 

underfitting overfitting optimal 

truth 
data 
model 



10 

A principled way of designing a classifier would be to adopt a probabilistic approach: 

Constructing a classifier 

Generative classifiers 

use Bayes’ rule to estimate 
𝑝 𝑋𝑡 𝑌𝑡 ∝ 𝑝 𝑌𝑡 𝑋𝑡 𝑝 𝑋𝑡  

• Gaussian Naïve Bayes 
• Linear Discriminant 

Analysis 

Discriminative classifiers 

estimate 𝑝 𝑋𝑡 𝑌𝑡  directly 
without Bayes’ theorem 

• Logistic regression 
• Relevance Vector 

Machine 

Discriminant classifiers 

estimate 𝑓 𝑌𝑡  directly 
 

• Fisher’s Linear 
Discriminant 

• Support Vector Machine 

𝑓 𝑌𝑡 that  𝑘  which maximizes  𝑝 𝑋𝑡 = 𝑘 𝑌𝑡, 𝑋, 𝑌  

In practice, classifiers differ in terms of how strictly they implement this principle. 



11 

Support vector machine (SVM) 

Vapnik (1999) Springer; Schölkopf et al. (2002) MIT Press 

Nonlinear SVM Linear SVM 

v1 

v2 
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Model-based analysis by generative embedding 

step 2 — 
kernel construction 

step 1 — 
model inversion 

measurements from 
an individual subject 

subject-specific 
inverted generative model 

subject representation in the 
generative score space 

A → B 

A → C 

B → B 

B → C 

A 

C 
B 

step 3 — 
analysis 

separating hyperplane to 
discriminate between groups 

A 

C 
B 

jointly discriminative 
connection strengths 

step 4 — 
interpretation 
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activity 
𝑧1(𝑡) 

Choosing a generative model: DCM for fMRI 

intrinsic 
connectivity direct inputs 

modulation of 
connectivity 

neural state equation 

haemodynamic forward model 
𝑥 = 𝑔(𝑧, 𝜃ℎ) 

BOLD signal 

neuronal states 

t 

driving input 𝑢1(𝑡) modulatory input 𝑢2(𝑡) 

t 

activity 
𝑧2(𝑡) 

activity 
𝑧3(𝑡) 

signal 
𝑥1(𝑡) 

signal 
𝑥2(𝑡) 

signal 
𝑥3(𝑡) 

Friston, Harrison & Penny (2003) NeuroImage 
Stephan & Friston (2007) Handbook of Brain Connectivity 

𝑧 = 𝐴 + ∑𝑢𝑗𝐵
𝑗 𝑧 + 𝐶𝑢  
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Summary of the analysis 

pre-
processing 

 
estimation of 
group contrasts 
based on 
all subjects 
except subject j 
 
selection of 
voxels for 
regions of 
interest 

 
unsupservised 
DCM inversion 
for each subject 

 
training the 
SVM 
on all subjects 
except subject j 
 
testing the SVM 
on subject j 

performance 
evaluation 

1 2 3 

repeat for each subject 

A 

C 
B 
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Example: diagnosis of moderate aphasia 
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Example: diagnosing stroke patients 

To illustrate our approach, we aimed to distinguish between stroke patients and 
healthy controls, based on non-lesioned regions involved in speech processing. 
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Example: diagnosing stroke patients 

anatomical 
regions of interest 

y = –26 mm 
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Example: diagnosing stroke patients 

MGB 

PT 

HG 
(A1) 

MGB 

PT 

HG 
(A1) 

stimulus input 

L R 
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Univariate analysis: parameter densities 

range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x)

range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x) range(d1$x, d2$x)

L.MGB → L.MGB L.MGB → L.HG L.MGB → L.PT L.HG → L.HG *** L.HG → L.PT *** L.HG → R.HG L.PT → L.MGB L.PT → L.HG 

L.PT → L.PT L.PT → R.PT R.MGB → R.MGB R.MGB → R.HG R.MGB → R.PT *** R.HG → L.HG *** R.HG → R.HG R.HG → R.PT 

R.PT → L.PT R.PT → R.MGB R.PT → R.HG R.PT → R.PT input to L.MGB input to R.MGB patients 
controls 
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Multivariate analysis: connectional fingerprints 

patients 
controls 
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Full Bayesian approach to performance evaluation 

Brodersen et al. (under review) 

Beta-binomial model 

𝑘𝑗
+ 𝑘𝑗

− 

𝜋𝑗
+ 𝜋𝑗

− 

𝛼+,𝛽+ 𝛼−,𝛽− 

𝑘𝑗
+
 𝑘𝑗

−
 

𝜌𝑗 

𝜇,Σ 

𝑗 = 1…𝑚 

Bin 𝑘𝑗
−  𝜎 𝜌𝑗,2 ,𝑛𝑗

−
 Bin 𝑘𝑗

+ 𝜎 𝜌𝑗,1 ,𝑛𝑗
+

 

𝒩2 𝜌𝑗 𝜇, Σ  

𝒩 𝜇 𝜇0, Σ/𝜅0   

Bin 𝑘𝑗
+ 𝜋𝑗

+, 𝑛𝑗
+

 Bin 𝑘𝑗
− 𝜋𝑗

−, 𝑛𝑗
−

 

Beta 𝜇𝑗
−|𝛼−,𝛽−   Beta 𝜇𝑗

+|𝛼+,𝛽+  

𝑝 𝛼−, 𝛽−  𝑝 𝛼+, 𝛽+  

𝑗 = 1…𝑚 

Inv-Wish𝑣0 Σ|Λ0
−1  

Normal-binomial model 
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Classification performance 

Activation-based analyses 
a anatomical feature selection 
c mass-univariate contrast feature selection 
s locally univariate searchlight feature selection 
p PCA-based dimensionality reduction 

Correlation-based analyses 
m correlations of regional means 
e correlations of regional eigenvariates 
z Fisher-transformed eigenvariates correlations 

Model-based analyses 
o gen.embed., original full model 
f gen.embed., less plausible feedforward model 
l gen.embed., left hemisphere only 
r gen.embed., right hemisphere only 

activation- 
based 

correlation- 
based 

model- 
based 

a c s p m e z o f l r 

b
al

an
ce

d
 a
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u

ra
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100% 

50% 

90% 

80% 

70% 

60% 

n.s. n.s. 

* 
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Biologically less plausible models perform poorly 

L.MGB 

L.PT 

L.HG 
(A1) 

R.MGB 

R.PT 

R.HG 
(A1) 

L.MGB 

L.PT 

L.HG 
(A1) 

R.MGB 

R.PT 

R.HG 
(A1) 

auditory stimuli auditory stimuli auditory stimuli 

feedforward connections only 
accuracy: 77% 

left hemisphere only 
accuracy: 81% 

right hemisphere only 
accuracy: 59% 
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The generative projection 
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L.MGB → L.MGB Voxel (-42,-26,10) mm 
Voxel (-56,-20,10) mm R.HG → L.HG 

controls 

patients 

Voxel-based contrast space Model-based parameter space 

classification accuracy 
(using all 23 model parameters) 

98% 

classification accuracy 
(using all voxels in the regions of interest) 

75% 
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Discriminative features in model space 

MGB 

PT 

HG 
(A1) 

MGB 

PT 

HG 
(A1) 

stimulus input 

L R 
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Discriminative features in model space 

MGB 

PT 

HG 
(A1) 

MGB 

PT 

HG 
(A1) 

stimulus input 

L R 

highly discriminative 
somewhat discriminative 
not discriminative 
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Question 1 – What do the data tell us about hidden processes in the brain? 

 compute the posterior 

𝑝 𝜃 𝑦,𝑚 =
𝑝 𝑦 𝜃,𝑚 𝑝 𝜃 𝑚

𝑝 𝑦 𝑚
  

Generative embedding and DCM 

? 

? 

Question 2 – Which model is best w.r.t. the observed fMRI data? 

 compute the model evidence 

𝑝 𝑚 𝑦 ∝ 𝑝 𝑦 𝑚 𝑝(𝑚)  

= ∫ 𝑝 𝑦 𝜃,𝑚 𝑝 𝜃 𝑚 𝑑𝜃  

Question 3 – Which model is best w.r.t. an external criterion? 

 compute the classification accuracy 

𝑝 ℎ 𝑦 = 𝑥 𝑦   

= 𝑝 ℎ 𝑦 = 𝑥 𝑦, 𝑦train, 𝑥train  𝑝 𝑦  𝑝 𝑦train  𝑝 𝑥train  𝑑𝑦 𝑑𝑦train 𝑑𝑥train  

{ patient, 
control } 
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Model-based classification using DCM 

structure-based 
classification 

activation-based 
classification 

model-based 
classification 

model selection 

inference on 
model 
parameters 

vs. 

? 

{ group 1, 
group 2 } 
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Model-based inference on individual pathophysiology 

model-based 

diagnostic tests 

application to brain activity data 
from individual patients 

model of neuronal (patho)physiology  

spectrum  
disease 

 

type 2 

type 3 

type 1 

diagnostic classification   

treatment X 

treatment Y 

treatment Z 


