Generative embedding and translational neuromodeling

Kay H. Brodersen^{1,2}

¹ Translational Neuromodeling Unit (TNU), Institute of Biomedical Engineering, University of Zurich & ETH Zurich
 ² Machine Learning Laboratory, Department of Computer Science, ETH Zurich

A computational approach to dissecting spectrum disorders

Model-based analysis by generative embedding

The generative projection

Colleagues and collaborators

Joachim M. Buhmann Lorenz Deserno Ajita Gupta Alex Leff Zhihao Lin Cheng Soon Ong Will Penny Florian Schlagenhauf Tom Schofield Klaas E. Stephan

1 The Laplace approximation

2 Variational Bayes

3 Model-based classification

4 Model-based clustering

1 The Laplace approximation

2 Variational Bayes

3 Model-based classification

4 Model-based clustering

Bayesian inference formalizes *model inversion*, the process of passing from a prior to a posterior in light of data.

In practice, evaluating the posterior is usually difficult because we cannot easily evaluate p(y), especially when:

- analytical solutions are not available
- numerical integration is too expensive

There are two approaches to approximate inference. They have complementary strengths and weaknesses.

Stochastic approximate inference

in particular sampling

- design an algorithm that draws samples $\theta^{(1)}, \dots, \theta^{(m)}$ from $p(\theta|y)$
- inspect sample statistics (e.g., histogram, sample quantiles, ...)
- ☑ asymptotically exact
- computationally expensive
- ☑ tricky engineering concerns

Structural approximate inference

in particular variational Bayes

- find an analytical proxy $q(\theta)$ that is maximally similar to $p(\theta|y)$
- 2 inspect distribution statistics of $q(\theta)$ (e.g., mean, quantiles, intervals, ...)

often insightful – and lightning-fast!
often hard work to derive
requires validation via sampling

The Laplace approximation

The Laplace approximation provides a way of approximating a density whose normalization constant we cannot evaluate, by fitting a Gaussian distribution to its mode.

$$p(z) = \frac{1}{Z} \times f(z)$$
normalization constant
(unknown) main part of the density
(easy to evaluate)

Pierre-Simon Laplace (1749 – 1827) French mathematician and astronomer

This is exactly the situation we face in Bayesian inference:

$$p(\theta|y) = \frac{1}{p(y)} \times p(y,\theta)$$

model evidence
(unknown) joint density
(easy to evaluate)

The Taylor approximation

The evaluation of any function f(x) can be approximated by a series:

$$f(x) \approx f(x^{*}) + f'(x^{*})(x - x^{*}) + \frac{1}{2!}f''(x^{*})(x - x^{*})^{2} + \frac{1}{3!}f'''(x^{*})(x - x^{*})^{3} + \cdots$$

Brook Taylor (1685 – 1731) English mathematician, introduced Taylor series

We begin by expressing the log-joint density $\mathcal{L}(\theta) \equiv \ln p(y, \theta)$ in terms of a secondorder Taylor approximation around the mode θ^* :

$$\mathcal{L}(\theta) \approx \mathcal{L}(\theta^*) + \underbrace{\mathcal{L}'(\theta^*)}_{0} (\theta - \theta^*) + \frac{1}{2} \mathcal{L}''(\theta^*) (\theta - \theta^*)^2$$
$$= \mathcal{L}(\theta^*) + \frac{1}{2} \mathcal{L}''(\theta^*) (\theta - \theta^*)^2$$

This already has the same form as a Gaussian density:

$$\ln \mathcal{N}(\theta | \mu, \eta^{-1}) = \frac{1}{2} \ln \eta - \frac{1}{2} \ln 2\pi - \frac{\eta}{2} (\theta - \mu)^2$$
$$= \frac{1}{2} \ln \frac{\eta}{2\pi} + \frac{1}{2} (-\eta) (\theta - \mu)^2$$

And so we have an approximate posterior:

$$q(\theta) = \mathcal{N}(\theta | \mu, \eta^{-1})$$
 with $\mu = \theta^*$ (mode of the log-posterior)
 $\eta = -\mathcal{L}''(\theta^*)$ (negative curvature at the mode)

Given a model with parameters $\theta = (\theta_1, \dots, \theta_p)$, the Laplace approximation reduces to a simple three-step procedure:

2 Evaluate the curvature of the log-joint at the mode: $\nabla \nabla \ln p(y, \theta^*)$

The Laplace approximation: demo

~kbroders/teaching/vb_gui.m

Limitations of the Laplace approximation

The Laplace approximation is often too strong a simplification.

1 The Laplace approximation

2 Variational Bayes

3 Model-based classification

4 Model-based clustering

Variational Bayesian (VB) inference generalizes the idea behind the Laplace approximation. In VB, we wish to find an approximate density that is maximally similar to the true posterior.

Variational calculus

Variational Bayesian inference is based on variational calculus.

Standard calculus

Newton, Leibniz, and others

- functions $f: x \mapsto f(x)$
- derivatives $\frac{\mathrm{d}f}{\mathrm{d}x}$

Example: maximize the likelihood expression $p(y|\theta)$ w.r.t. θ

Variational calculus

Euler, Lagrange, and others

• functionals $F: f \mapsto F(f)$

• derivatives
$$\frac{dF}{df}$$

Example: maximize the entropy H[p] w.r.t. a probability distribution p(x)

Leonhard Euler (1707 – 1783) Swiss mathematician, 'Elementa Calculi Variationum' Variational calculus lends itself nicely to approximate Bayesian inference.

$$\ln p(y) = \ln \frac{p(y,\theta)}{p(\theta|y)}$$

$$= \int q(\theta) \ln \frac{p(y,\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \ln \frac{p(y,\theta)}{p(\theta|y)} \frac{q(\theta)}{q(\theta)} d\theta$$

$$= \int q(\theta) \left(\ln \frac{q(\theta)}{p(\theta|y)} + \ln \frac{p(y,\theta)}{q(\theta)} \right) d\theta$$

$$= \int q(\theta) \ln \frac{q(\theta)}{p(\theta|y)} d\theta + \int q(\theta) \ln \frac{p(y,\theta)}{q(\theta)} d\theta$$

$$KL[q||p] \qquad F(q,y)$$
free energy
$$q(\theta) \text{ and } p(\theta|y)$$

$$KL[q||p]$$

$$KL[q||p]$$

$$KL[q||p]$$

$$KL[q||p]$$

$$KL[q||p]$$

$$F(q,y)$$

$$F(q,y)$$

Variational calculus and the free energy

In summary, the log model evidence can be expressed as:

Maximizing F(q, y) is equivalent to:

- minimizing KL[q||p]
- tightening F(q, y) as a lower bound to the log model evidence

* In this illustrative example, the log model evidence and the free energy are positive; but the above equivalences hold just as well when the log model evidence is negative.

Computing the free energy

We can decompose the free energy F(q, y) as follows:

$$F(q, y) = \int q(\theta) \ln \frac{p(y, \theta)}{q(\theta)} d\theta$$

= $\int q(\theta) \ln p(y, \theta) \ d\theta - \int q(\theta) \ln q(\theta) \ d\theta$
= $(\ln p(y, \theta))_q + H[q]$
expected log-
joint Shannon
entropy

Variational Bayes: demo

~kbroders/teaching/vb_gui.m

When inverting models with several parameters, a common way of restricting the class of approximate posteriors $q(\theta)$ is to consider those posteriors that factorize into independent partitions,

$$q(heta) = \prod_i q_i(heta_i)$$
 ,

where $q_i(\theta_i)$ is the approximate posterior for the i^{th} subset of parameters.

Jean Daunizeau, www.fil.ion.ucl.ac.uk/ ~jdaunize/presentations/Bayes2.pdf

Variational inference under the mean-field assumption

$$\begin{split} F(q, y) &= \int q(\theta) \ln \frac{p(y, \theta)}{q(\theta)} d\theta \\ &= \int \prod_{i} q_{i} \times \left(\ln p(y, \theta) - \sum_{i} \ln q_{i} \right) d\theta \quad \underset{q(\theta) = \prod_{i} q_{i}(\theta_{i})}{\text{mean-field assumption:}} \\ &= \int q_{j} \prod_{j} q_{i} \left(\ln p(y, \theta) - \ln q_{j} \right) d\theta - \int q_{j} \prod_{j} q_{i} \sum_{j} \ln q_{i} d\theta \\ &= \int q_{j} \left(\underbrace{\int \prod_{j} q_{i} \ln p(y, \theta) d\theta_{\backslash j} - \ln q_{j}}_{(\ln p(y, \theta))q_{\backslash j}} \right) d\theta_{j} - \int q_{j} \int \prod_{j} q_{i} \ln \prod_{j} q_{i} d\theta_{\backslash j} d\theta_{j} \\ &= \int q_{j} \ln \frac{\exp\left(\langle \ln p(y, \theta) \rangle_{q_{\backslash j}}\right)}{q_{j}} d\theta_{j} + c \\ &= -\text{KL} \left[q_{j} || \exp\left(\langle \ln p(y, \theta) \rangle_{q_{\backslash j}} \right) \right] + c \end{split}$$

Typical strategies in variational inference

	no parametric assumptions	parametric assumptions $q(oldsymbol{ heta}) = F(oldsymbol{ heta} oldsymbol{\delta})$
no mean-field assumption	(variational inference = exact inference)	fixed-form optimization of moments
mean-field assumption $q(oldsymbol{ heta}) = \prod q(oldsymbol{ heta}_i)$	iterative free-form variational optimization	iterative fixed-form variational optimization

Variational algorithm under the mean-field assumption

We can rewrite the free energy as: $F(q, y) = -\mathrm{KL}\left[q_j || \exp\left(\langle \ln p(y, \theta) \rangle_{q_{i}}\right)\right] + c$

Suppose the densities $q_{\setminus j} \equiv q(\theta_{\setminus j})$ are kept fixed. Then the approximate posterior $q(\theta_j)$ that maximizes F(q, y) is given by:

$$q_j^* = \arg \max_{q_j} F(q, y)$$
$$= \frac{1}{Z} \exp\left(\langle \ln p(y, \theta) \rangle_{q \setminus j}\right)$$

Therefore:

$$\ln q_j^* = \underbrace{\langle \ln p(y,\theta) \rangle_{q_{\setminus j}}}_{=:I(\theta_j)} - \ln Z$$

This implies a straightforward algorithm for variational inference:

- Initialize all approximate posteriors $q(\theta_i)$, e.g., by setting them to their priors.
- Cycle over the parameters, revising each given the current estimates of the others.
- Loop until convergence.

We consider a multiple linear regression model with a shrinkage prior on the regression coefficients.

We wish to infer on the coefficients β , their precision α , and the noise precision λ . There is no analytical posterior

 $p(\beta, \alpha, \lambda|y).$

We therefore seek a variational approximation:

 $q(\beta, \alpha, \lambda) = q_{\beta}(\beta) q_{\alpha}(\alpha) q_{\lambda}(\lambda).$

Variational linear regression: coefficients precision α

$$\ln q^{*}(\alpha) = \langle \ln p(y, \beta, \alpha, \lambda) \rangle_{q(\beta,\lambda)} + c$$

$$= \underbrace{\langle \ln \prod \mathcal{N}(y_{l}|\beta^{T}x_{\nu}\lambda^{-1}) \rangle_{q(\beta)q(\lambda)}}_{c} + \langle \ln \mathcal{N}_{d}(\beta|0, \alpha^{-1}I) \rangle_{q(\beta)q(\lambda)} + \langle \ln \operatorname{Ga}(\alpha|a_{0}, b_{0}) \rangle_{q(\beta)q(\lambda)} + c$$

$$= \left(-\frac{1}{2} \ln \underbrace{|\alpha^{-1}I|}_{\alpha^{-d}} - \underbrace{\frac{d}{2} \ln 2\pi}_{c} - \frac{1}{2} (\beta - 0)^{T} \alpha I (\beta - 0) \right)_{q(\beta)}$$

$$+ \langle a_{0} \ln b_{0} - \ln \Gamma(a_{0}) + (a_{0} - 1) \ln \alpha - b_{0} \alpha \rangle_{q(\beta)} + c$$

$$= \frac{d}{2} \ln \alpha - \frac{\alpha}{2} \langle \beta^{T}\beta \rangle_{q(\beta)} + (a_{0} - 1) \ln \alpha - b_{0} \alpha + c$$

$$= \left(\underbrace{\frac{d}{2} + a_{0} - 1}_{0} \right) \ln \alpha - \left(\underbrace{\frac{1}{2} \langle \beta^{T}\beta \rangle_{q(\beta)} + b_{0}}_{0} \right) \alpha + c$$

$$\Rightarrow q^{*}(\alpha) = \operatorname{Ga}(\alpha|a_{n}, b_{n}) \quad \text{with} \quad a_{n} = a_{0} + \frac{d}{2}$$

$$b_{n} = b_{0} + \frac{1}{2} \langle \beta^{T}\beta \rangle_{q(\beta)}$$

Variational linear regression: cofficients β

$$\begin{aligned} \ln q^*(\beta) &= \langle \ln p(y,\beta,\alpha,\lambda) \rangle_{q(\alpha,\lambda)} + c \\ &= \langle \ln \prod \mathcal{N}(y_i | \beta^T x_i,\lambda^{-1}) \rangle_{q(\alpha)q(\lambda)} + \langle \ln \mathcal{N}_d(\beta | 0, \alpha^{-1}I) \rangle_{q(\alpha)q(\lambda)} + \underbrace{\langle \ln \operatorname{Ga}(\alpha | a_0, b_0) \rangle_{q(\alpha)q(\lambda)}}_{c} + c \\ &= \sum_{i}^{n} \left\langle \frac{1}{2} \ln \lambda - \frac{1}{2} \ln 2\pi - \frac{\lambda}{2} (y_i - \beta^T x_i)^2 \right\rangle_{q(\alpha)q(\lambda)} + \left\langle -\frac{1}{2} \ln |\alpha^{-1}I| - \frac{d}{2} \ln 2\pi - \frac{1}{2} \beta^T \alpha I \beta \right\rangle_{q(\alpha)} + c \\ &= -\frac{\langle \lambda \rangle_{q(\lambda)}}{2} \sum_{i}^{n} (y_i - \beta^T x_i)^2 - \frac{1}{2} \langle \alpha \rangle_{q(\alpha)} \beta^T \beta + c \\ &= \underbrace{-\frac{\langle \lambda \rangle_{q(\lambda)}}{2} y^T y}_{c} + \langle \lambda \rangle_{q(\lambda)} \beta^T X^T y - \frac{\langle \lambda \rangle_{q(\lambda)}}{2} \beta^T X^T X \beta - \frac{1}{2} \beta^T \langle \alpha \rangle_{q(\alpha)} I \beta + c \\ &= -\frac{1}{2} \beta^T \left\{ \langle \lambda \rangle_{q(\lambda)} X^T X + \langle \alpha \rangle_{q(\alpha)} I \right\} \beta + \beta^T \left\langle \lambda \rangle_{q(\lambda)} X^T y + c \right\} \end{aligned}$$

 $\Rightarrow q^*(\beta) = \mathcal{N}_d(\beta | \mu_n, \Lambda_n^{-1}) \quad \text{with} \quad \Lambda_n = \langle \alpha \rangle_{q(\alpha)} I + \langle \lambda \rangle_{q(\lambda)} X^T X, \quad \mu_n = \Lambda_n^{-1} \langle \lambda \rangle_{q(\lambda)} X^T y$

Variational linear regression: noise precision λ

$$\ln q^*(\lambda) = \langle \ln p(y,\beta,\alpha,\lambda) \rangle_{q(\beta,\alpha)} + c$$

$$= \left\{ \sum_{i=1}^{n} \frac{1}{2} \ln \lambda - \frac{1}{2} \frac{\ln 2\pi}{c} - \frac{\lambda}{2} (y_i - \beta^T x_i)^2 \right\}_{q(\beta)q(\alpha)}$$

$$+ \left\{ \frac{c_0 \ln d_0}{c} - \frac{\ln \Gamma(c_0)}{c} + (c_0 - 1) \ln \lambda - d_0 \lambda \right\}_{q(\beta)q(\alpha)} + c$$

$$= \frac{n}{2} \ln \lambda - \frac{\lambda}{2} y^T y + \lambda \langle \beta \rangle_{q(\beta)}^T X^T y - \frac{\lambda}{2} \langle \beta \rangle_{q(\beta)}^T X^T X \langle \beta \rangle_{q(\beta)} + (c_0 - 1) \ln \lambda - d_0 \lambda + c$$

$$= \left\{ c_0 + \frac{n}{2} - 1 \right\} \ln \lambda - \left\{ \frac{1}{2} y^T y - \langle \beta \rangle_{q(\beta)}^T X^T y + \frac{1}{2} \langle \beta \rangle_{q(\beta)}^T X^T X \langle \beta \rangle_{q(\beta)} + d_0 \right\} \lambda + c$$

$$\Rightarrow q^*(\lambda) = \operatorname{Ga}(\lambda|c_n, d_n), \qquad c_n = c_0 + \frac{n}{2}$$
$$d_n = d_0 + \frac{1}{2}y^T y - \langle \beta \rangle_{q(\beta)}^T X^T y + \frac{1}{2} \langle \beta \rangle_{q(\beta)}^T X^T X \langle \beta \rangle_{q(\beta)}$$

Variational linear regression: example

Design matrix X^T

regressor 1 (sinusoid)	
regressor 2 (linear slope)	
regressor 3 (constant)	

Variational linear regression: example

Variational linear regression: example

1 The Laplace approximation

2 Variational Bayes

3 Model-based classification

4 Model-based clustering

Example: diagnosing stroke patients

Choosing a generative model: DCM for fMRI

Example: diagnosing stroke patients

anatomical regions of interest

Example: diagnosing stroke patients

Univariate analysis: parameter densities

Multivariate analysis: connectional fingerprints

Classification performance

Activation-based analyses

- a anatomical feature selection
- c mass-univariate contrast feature selection
- **s** locally univariate searchlight feature selection
- p PCA-based dimensionality reduction

Correlation-based analyses

- **m** correlations of regional means
- e correlations of regional eigenvariates
- **z** Fisher-transformed eigenvariates correlations

Model-based analyses

- o gen.embed., original full model
- gen.embed., less plausible feedforward model
- gen.embed., left hemisphere only
- r gen.embed., right hemisphere only

The generative projection

Discriminative features in model space

Discriminative features in model space

1 The Laplace approximation

2 Variational Bayes

3 Model-based classification

4 Model-based clustering

Generative embedding and clustering

Dissecting schizophrenia into subtypes

Distinguishing between schizophrenia and healthy controls

