Multivariate analyses & decoding

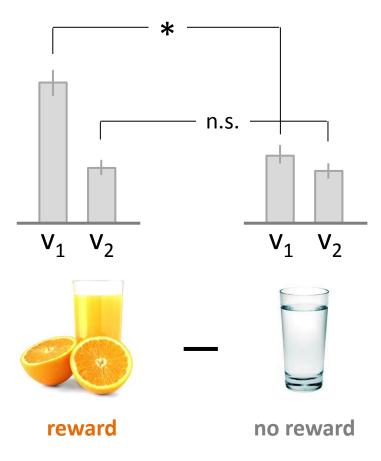
Kay H. Brodersen

Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering University of Zurich & ETH Zurich

http://people.inf.ethz.ch/bkay

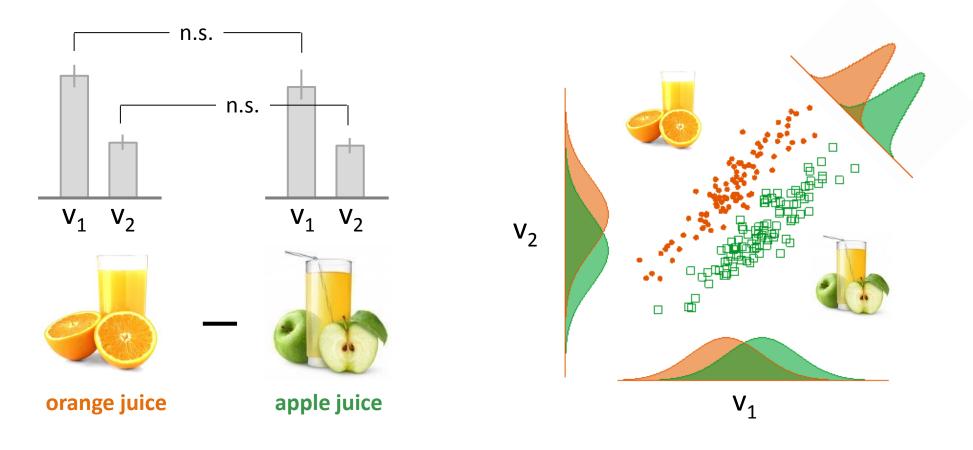
Why multivariate?

Univariate approaches are excellent for localizing activations in individual voxels.



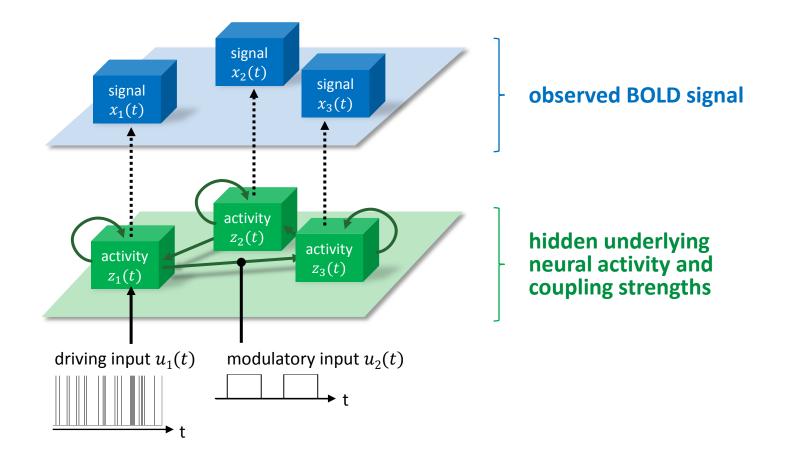
Why multivariate?

Multivariate approaches can be used to examine responses that are jointly encoded in multiple voxels.



Why multivariate?

Multivariate approaches can utilize 'hidden' quantities such as coupling strengths.



Friston, Harrison & Penny (2003) NeuroImage; Stephan & Friston (2007) Handbook of Brain Connectivity; Stephan et al. (2008) NeuroImage

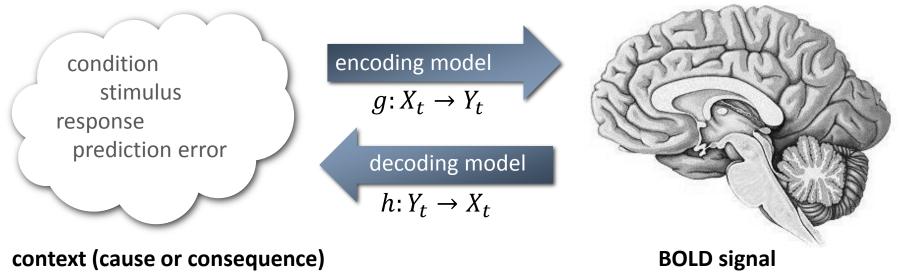
1 Modelling principles

2 Classification

3 Multivariate Bayes

4 Generative embedding

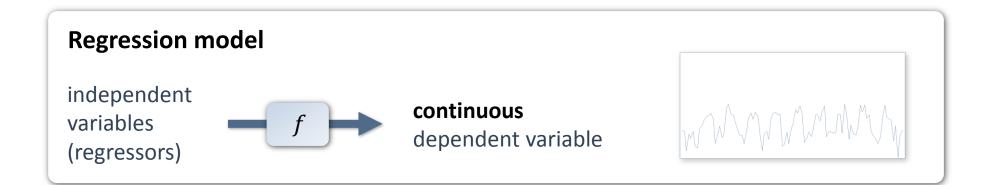
Encoding vs. decoding



$$X_t \in \mathbb{R}^d$$

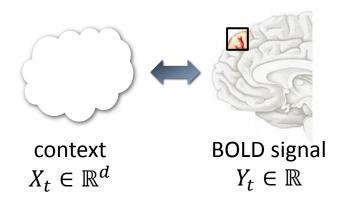
 $Y_t \in \mathbb{R}^{v}$

Regression vs. classification



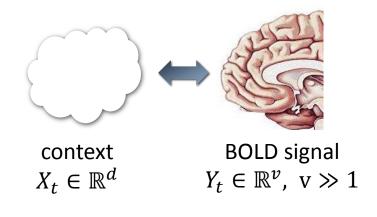
Univariate vs. multivariate models

A univariate model considers a single voxel at a time.



Spatial dependencies between voxels are only introduced afterwards, through random field theory.

A multivariate model considers many voxels at once.

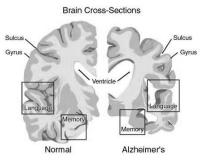


Multivariate models enable inferences on distributed responses without requiring focal activations.

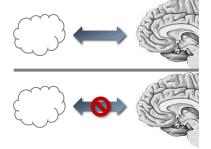
Prediction vs. inference

The goal of **prediction** is to find a highly accurate encoding or decoding function.

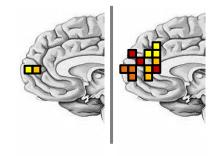
The goal of **inference** is to decide between competing hypotheses.



predicting a cognitive state using a brain-machine interface predicting a subject-specific diagnostic status



comparing a model that links distributed neuronal activity to a cognitive state with a model that does not



weighing the evidence for sparse vs. distributed coding

predictive density

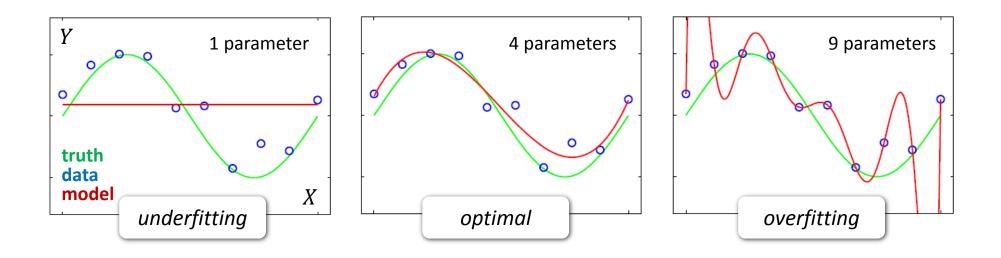
 $p(X_{new}|Y_{new}, X, Y) = \int p(X_{new}|Y_{new}, \theta) p(\theta|X, Y) d\theta$

marginal likelihood (model evidence) $p(X|Y) = \int p(X|Y,\theta)p(\theta)d\theta$

Goodness of fit vs. complexity

Goodness of fit is the degree to which a model explains observed data.

Complexity is the flexibility of a model (including, but not limited to, its number of parameters).



We wish to find the model that optimally trades off goodness of fit and complexity.

Bishop (2007) PRML

Summary of modelling terminology

General Linear Model (GLM)

• mass-univariate encoding model

• to explain brain activity from context and find clusters of similar effects

Dynamic Causal Modelling (DCM)

- multivariate encoding model
- to evaluate connectivity hypotheses

Classification

- multivariate decoding model
- to predict a categorical context label from brain activity

Multivariate Bayes (MVB)

- multivariate decoding model
- to evaluate anatomical and coding hypotheses

1 Modelling principles

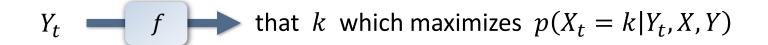
2 Classification

3 Multivariate Bayes

4 Generative embedding

Constructing a classifier

A principled way of designing a classifier would be to adopt a probabilistic approach:



In practice, classifiers differ in terms of how strictly they implement this principle.

Generative classifiers

use Bayes' rule to estimate $p(X_t|Y_t) \propto p(Y_t|X_t)p(X_t)$

- Gaussian naïve Bayes
- Linear discriminant analysis

Discriminative classifiers

estimate $p(X_t|Y_t)$ directly without Bayes' theorem

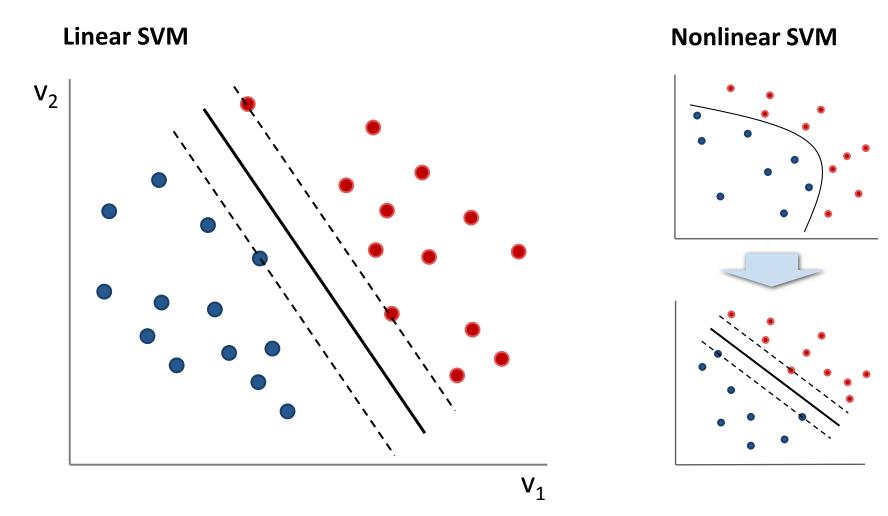
- Logistic regression
- Relevance vector machine
- Gaussian process classifier

Discriminant classifiers

estimate $f(Y_t)$ directly

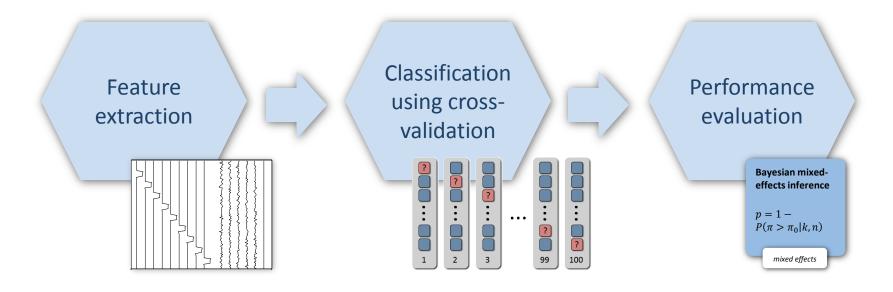
- Fisher's linear discriminant
- Support vector machine

Support vector machine (SVM)



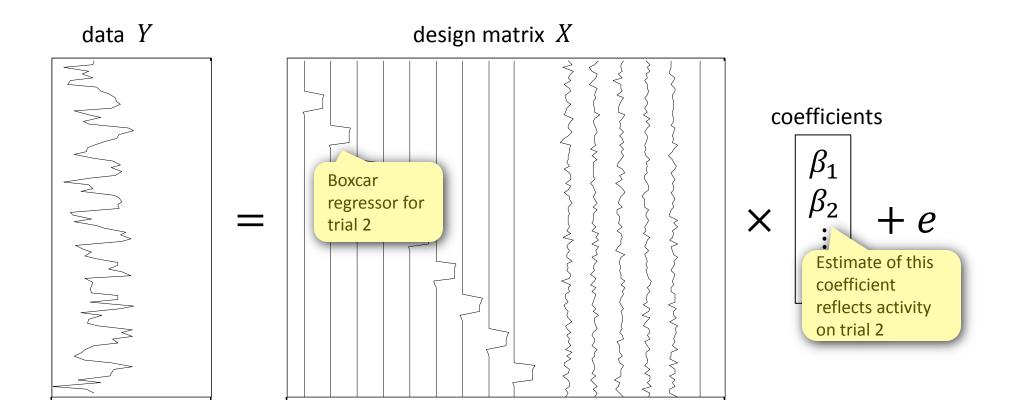
Vapnik (1999) Springer; Schölkopf et al. (2002) MIT Press

Stages in a classification analysis

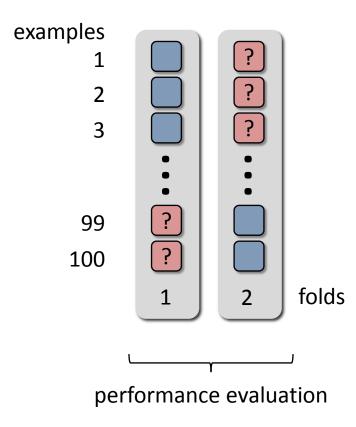


Feature extraction for trial-by-trial classification

We can obtain trial-wise estimates of neural activity by filtering the data with a GLM.



The generalization ability of a classifier can be estimated using a resampling procedure known as *cross-validation*. One example is 2-fold cross-validation:

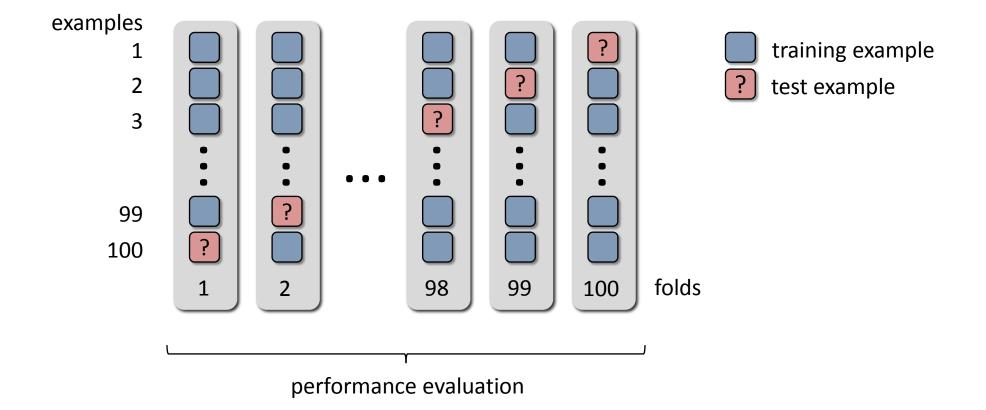


training example

test examples

Cross-validation

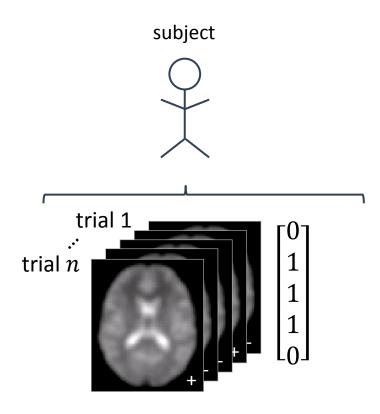
A more commonly used variant is *leave-one-out* cross-validation.



Performance evaluation

m \$ Single-subject study with n trials

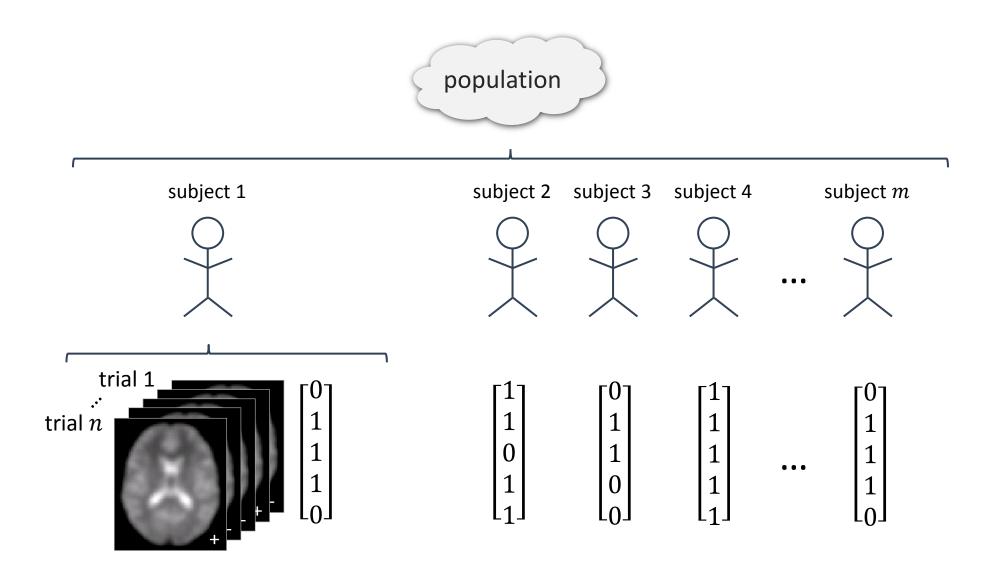
The most common approach is to assess how likely the obtained number of correctly classified trials could have occurred by chance.



Binomial test $p = P(X \ge k|H_0) = 1 - B(k|n, \pi_0)$ In MATLAB: $p = 1 - binocdf(k, n, pi_0)$

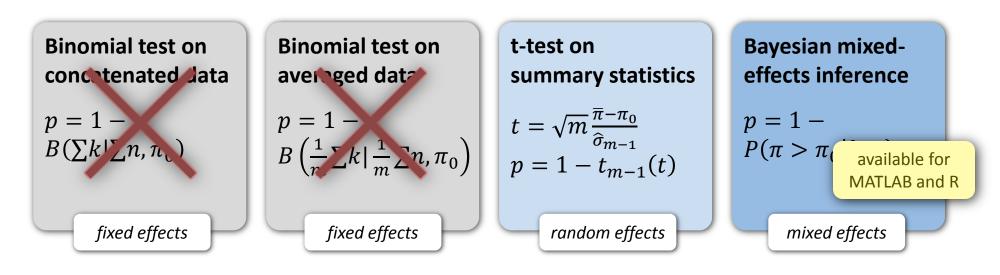
- *k* number of correctly classified trials
- *n* total number of trials
- π_0 chance level (typically 0.5)
- *B* binomial cumulative density function

Performance evaluation



\mathfrak{f} Group study with m subjects, n trials each

In a group setting, we must account for both within-subjects (fixed-effects) and betweensubjects (random-effects) variance components.

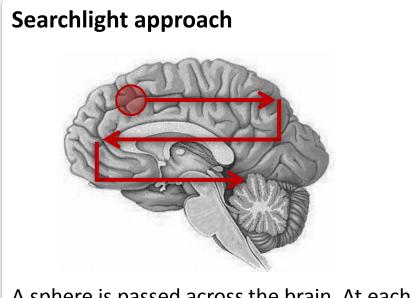


 $\begin{array}{ll} \bar{\pi} & \text{sample mean of sample accuracies} & \pi_0 & \text{chance level (typically 0.5)} \\ \hat{\sigma}_{m-1} & \text{sample standard deviation} & t_{m-1} & \text{cumulative Student's } t \text{-distribution} \end{array}$

Brodersen, Mathys, Chumbley, Daunizeau, Ong, Buhmann, Stephan (2012) JMLR Brodersen, Daunizeau, Mathys, Chumbley, Buhmann, Stephan (*under review*)

Spatial deployment of informative regions

Which brain regions are jointly informative of a cognitive state of interest?



A sphere is passed across the brain. At each location, the classifier is evaluated using only the voxels in the current sphere \rightarrow map of t-scores.

 Whole-brain approach

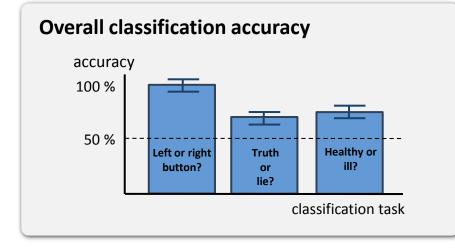
 Image: state of the sta

A constrained classifier is trained on wholebrain data. Its voxel weights are related to their empirical null distributions using a permutation test \rightarrow map of t-scores.

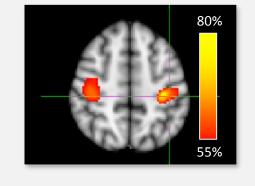
Mourao-Miranda et al. (2005) NeuroImage

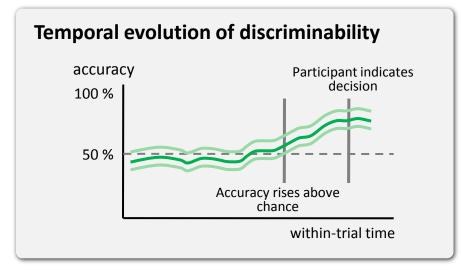
Nandy & Cordes (2003) *MRM* Kriegeskorte et al. (2006) *PNAS*

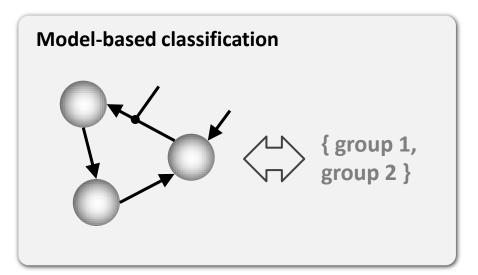
Research questions for classification



Spatial deployment of discriminative regions



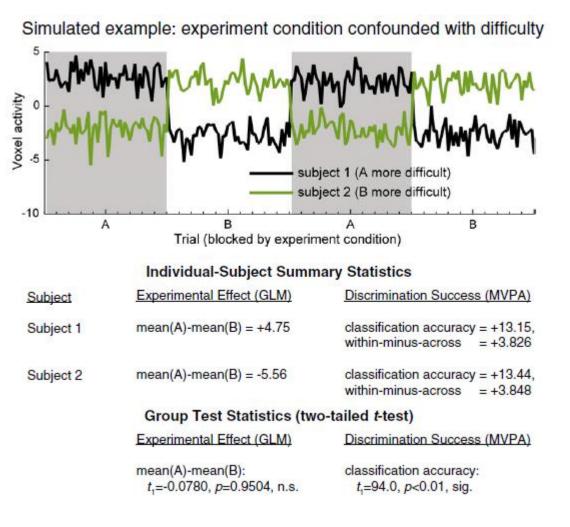




Pereira et al. (2009) NeuroImage, Brodersen et al. (2009) The New Collection

Potential problems

- Multivariate classification studies conduct group tests on single-subject summary statistics that
 - discard the sign or direction of underlying effects
 - do not necessarily take into account confounding effects (e.g. correlation of task conditions with difficulty etc.)
- Therefore, in some analyses confounds rather than distributed representations may have produced positive results.



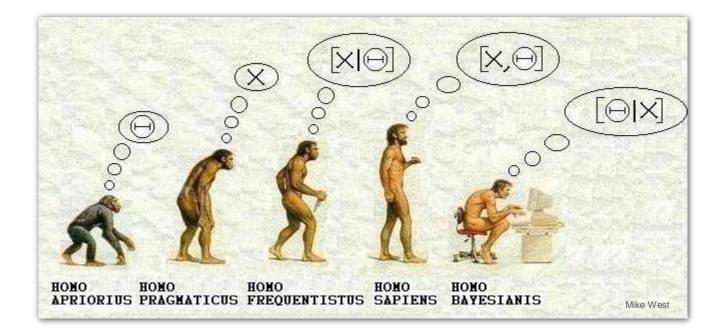
1 Modelling principles

2 Classification

3 Multivariate Bayes

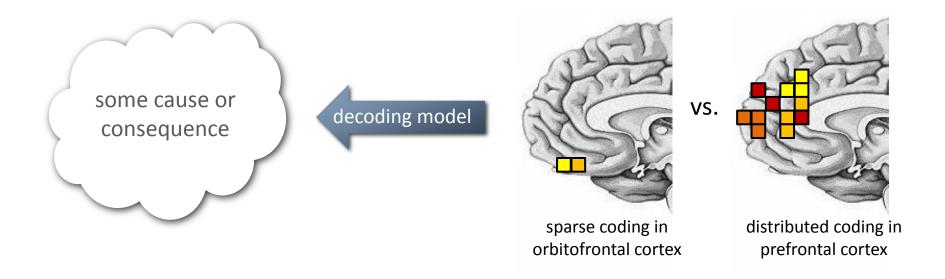
4 Generative embedding

SPM brings multivariate analyses into the conventional inference framework of Bayesian hierarchical models and their inversion.



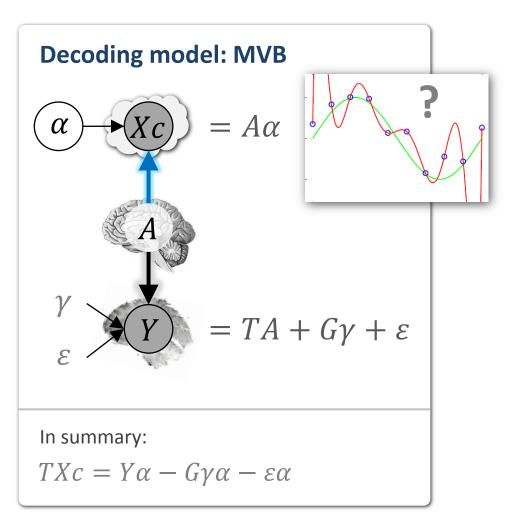
Multivariate Bayes

Multivariate analyses in SPM rest on the central notion that inferences about how the brain represents things can be reduced to model comparison.



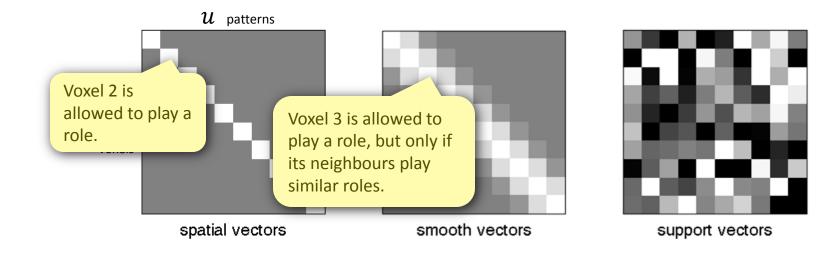
From encoding to decoding



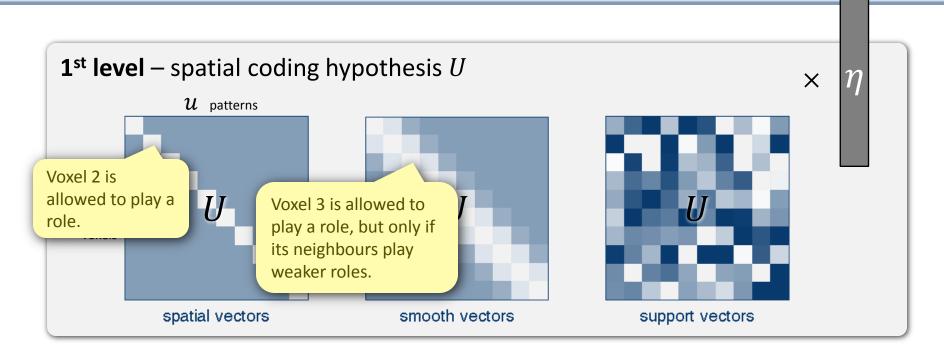


Specifying the prior for MVB

To make the ill-posed regression problem tractable, MVB uses a prior on voxel weights. Different priors reflect different anatomical and/or coding hypotheses.



Specifying the prior for MVB

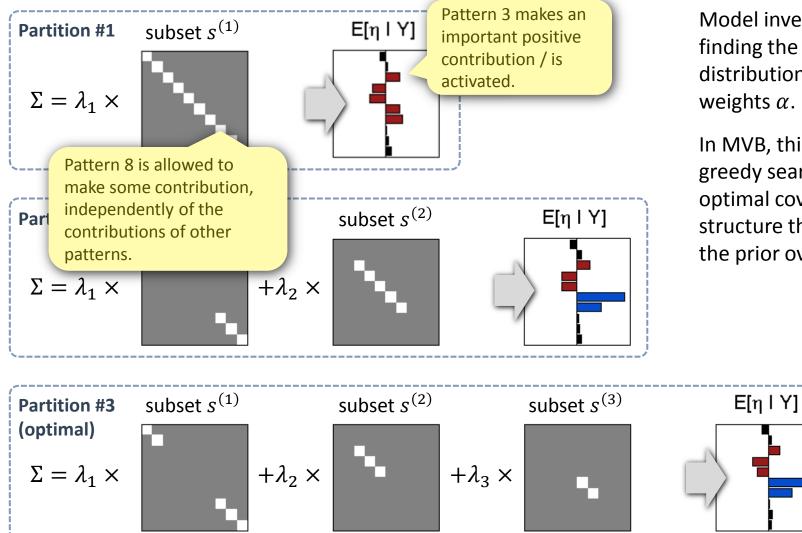


2nd level – pattern covariance structure
$$\Sigma$$

 $p(\eta) = \mathcal{N}(\eta|0, \Sigma)$
 $\Sigma = \sum_i \lambda_i s^{(i)}$

Thus: $p(\alpha|\lambda) = \mathcal{N}_n(\alpha|0, U\Sigma U^T)$ and $p(\lambda) = \mathcal{N}(\lambda|\pi, \Pi^{-1})$

Inverting the model



Model inversion involves finding the posterior distribution over voxel weights α .

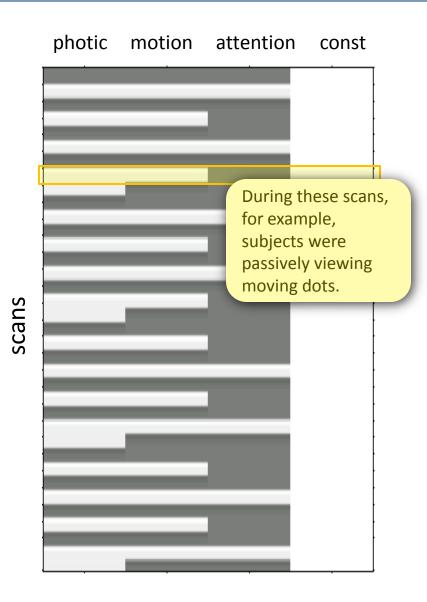
In MVB, this includes a greedy search for the optimal covariance structure that governs the prior over α .

Example: decoding motion from visual cortex

MVB can be illustrated using SPM's attentionto-motion example dataset.

This dataset is based on a simple block design. There are three experimental factors:

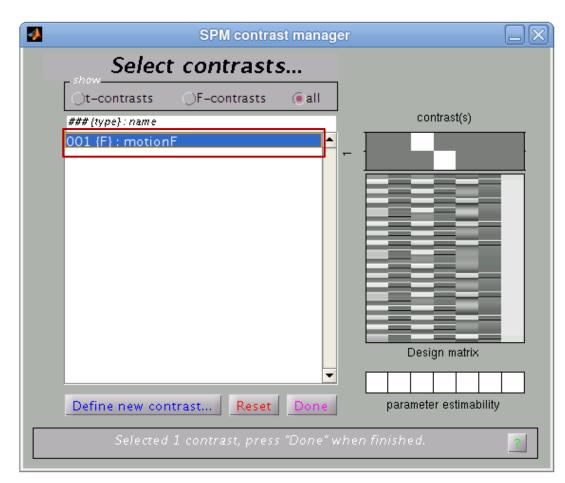
- □ **photic** display shows random dots
- □ **motion** dots are moving
- □ **attention** subjects asked to pay attention



*	5	6PM8 (kbroder	s): Menu				
	Spatial pre-pro Realign (Est		timing	Smooth			
	Coregister (👻 Norma	ise 🔻	Segment			
	Model specification, review and estimation						
	Specify	1st-level	Re	view			
	Specify	2nd-level	Esti	mate			
	Inference Results						
	Dynamic Causal Modelling						
	SPM for functional MRI						
	Display	Check Reg	Render	FMRI 👻			
	Toolbox: 🔻	PPIs	ImCalc	DICOM Imp			
	Help	Utils 👻	Batch	Quit			
	(c) 1991,1994-2003,2005-2010						

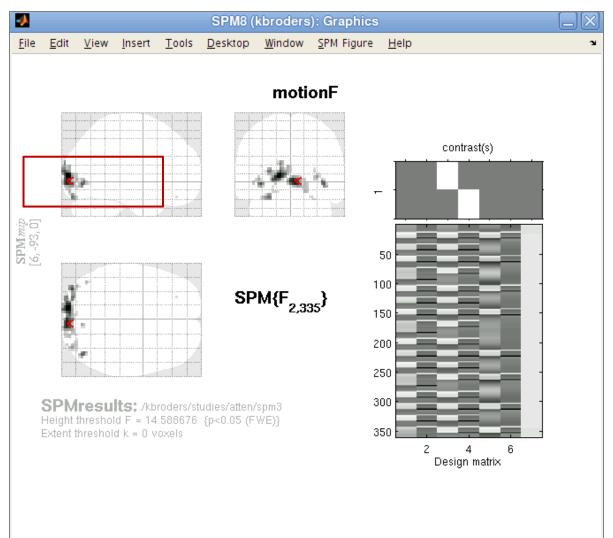
Step 1

After having specified and estimated a model, use the *Results* button.



Step 2

Select the contrast to be decoded.



Step 3 Pick a region of interest.

SPM8 (k	broders): SPM{F}: Resul	ts 💷 🗙
Design Contrasts		
p-values	Multivariate	Display
whole brain	eigenvari CVA	plot
current cluster	multivariate Bayes	overlays 👻
small volume	BMS p-value	save
	Hemodynamics	clear exit ?
co-ordinates x = 9.00 v	= -90.00 z = 0.00	statistic 33.05
3.00 4		33.05

Step 4

Multivariate Bayes can be invoked from within the Multivariate section.

SPM8 (kbroders): SPM{F}: Results						
Design Contrasts 🏻 🗨						
nar	me motionF					
sphere radius (m	m) 16					
anatomical hypothesis size of successive subdivisi Greedy search coding hypothesis						
						<i>p-values Multiv</i> whole brain eigenve current cluster mult small volume BMS
Hemodynamics clear exit ?						
co-ordinates x = <u>6.00</u> y = <u>-93.00</u> .	statistic z = 0.00 38.99					

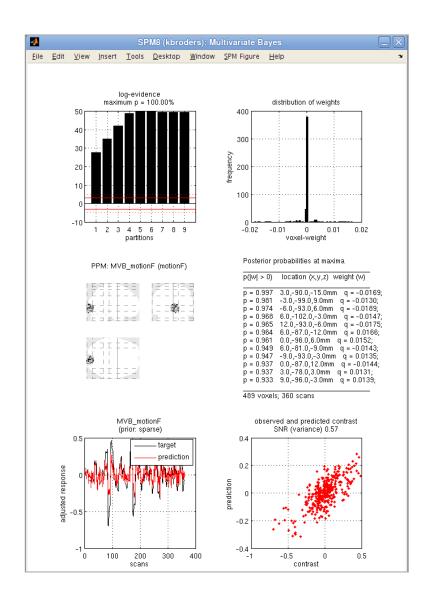
Step 5

Here, the region of interest is specified as a sphere around the cursor. The spatial prior implements a *sparse* coding hypothesis.

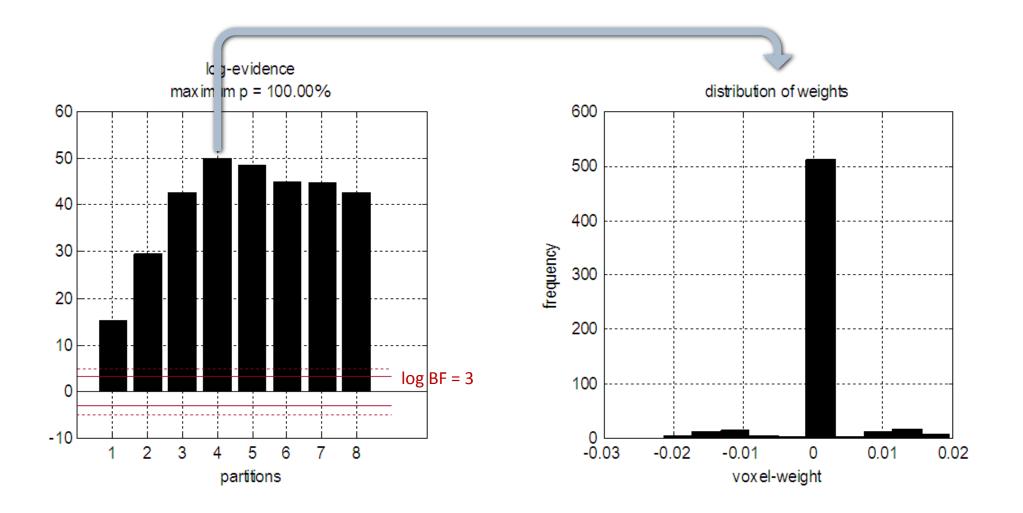
SPM8 (k	broders): SPM{F}: I	Results				
Design Contrasts						
	motionF					
sphere radius (mm)		16				
sparse						
size of successiv	0.5					
Greedy search steps		9				
p-values	Multivariate	Display				
whole brain	eigenvari CV					
current cluster	multivariate Bay					
small volume	BMS p-val					
Sindi volume ons pource save						
	Hemodynamic	s clear exit ?				
co-ordinates		statistic				
x = 6.00 y	= -93.00 z = (0.00 38.99				

Step 6

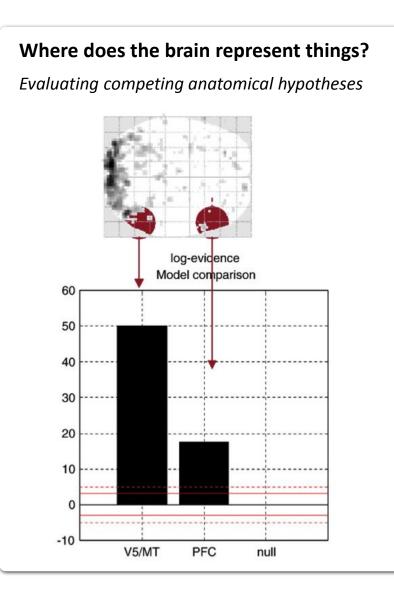
Results can be displayed using the BMS button.

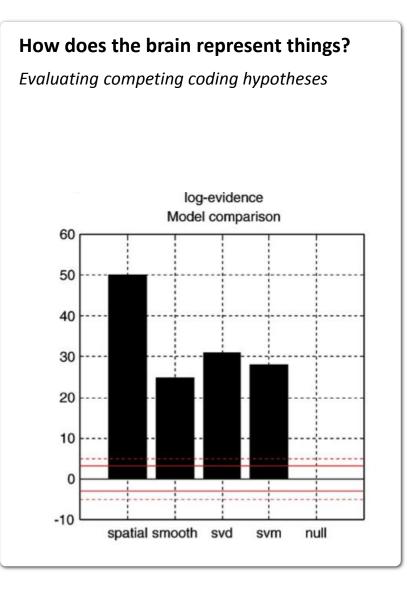


Model evidence and voxel weights

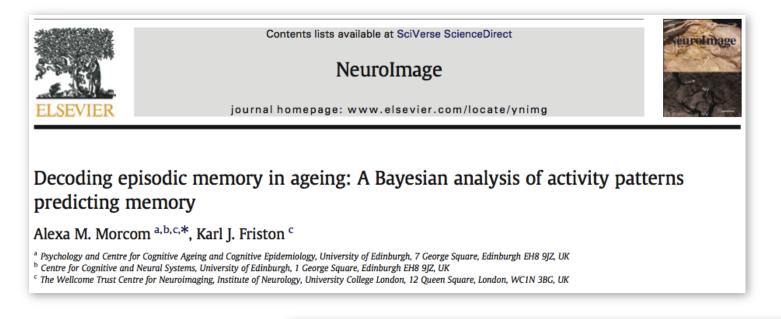


Summary: research questions for MVB





Recent MVB studies



The Journal of Neuroscience, November 14, 2012 • 32(46):16417-16423 • 16417

Behavioral/Systems/Cognitive

Action-Specific Value Signals in Reward-Related Regions of the Human Brain

Thomas H. B. FitzGerald, Karl J. Friston, and Raymond J. Dolan Wellcome Trust Centre for Neuroimaging, London WC1N 3BG, United Kingdom 1 Modelling principles

2 Classification

3 Multivariate Bayes

4 Generative embedding

Model-based analyses by data representation

Model-based analyses

How do patterns of hidden quantities (e.g., connectivity among brain regions) differ between groups?

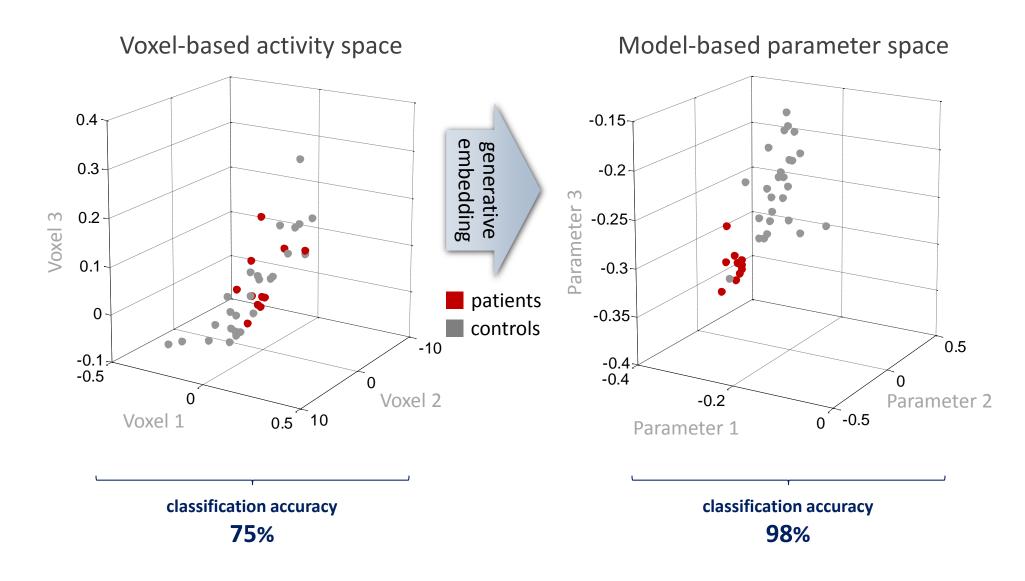
Structure-based analyses

Which anatomical structures allow us to separate patients and healthy controls?

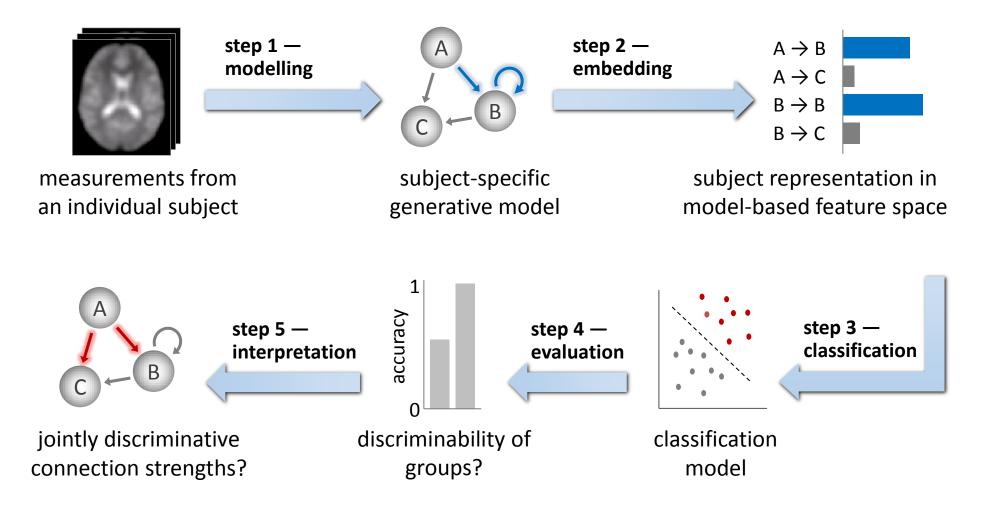
Activation-based analyses

Which functional differences allow us to separate groups?

Generative embedding

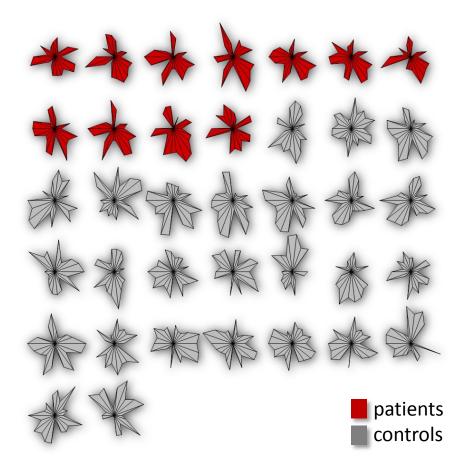


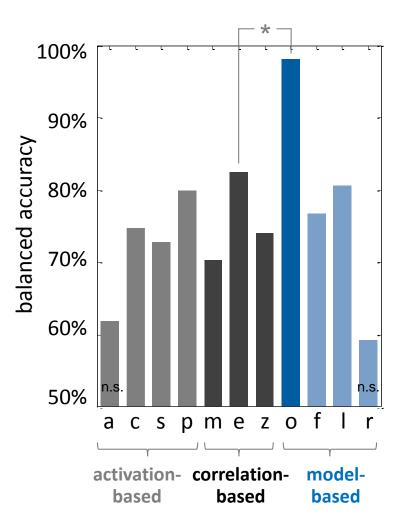
Model-based classification



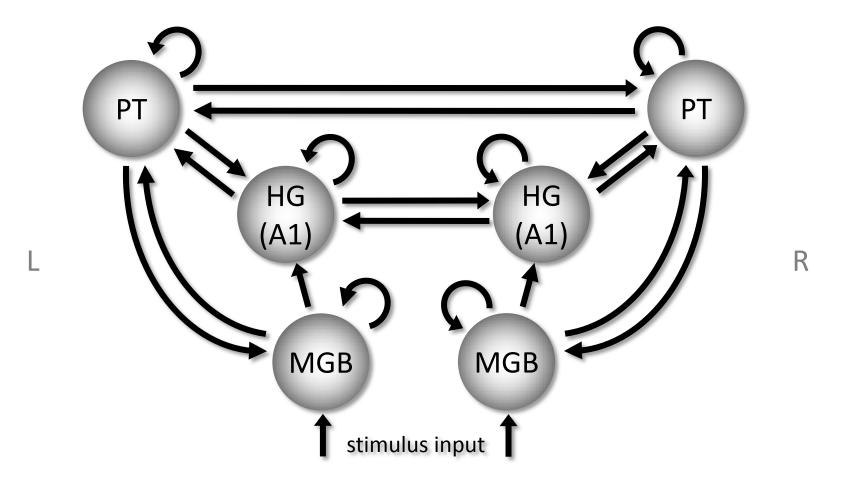
Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (2011) *NeuroImage* Brodersen, Schofield, Leff, Ong, Lomakina, Buhmann, Stephan (2011) *PLoS Comput Biol*

Model-based classification

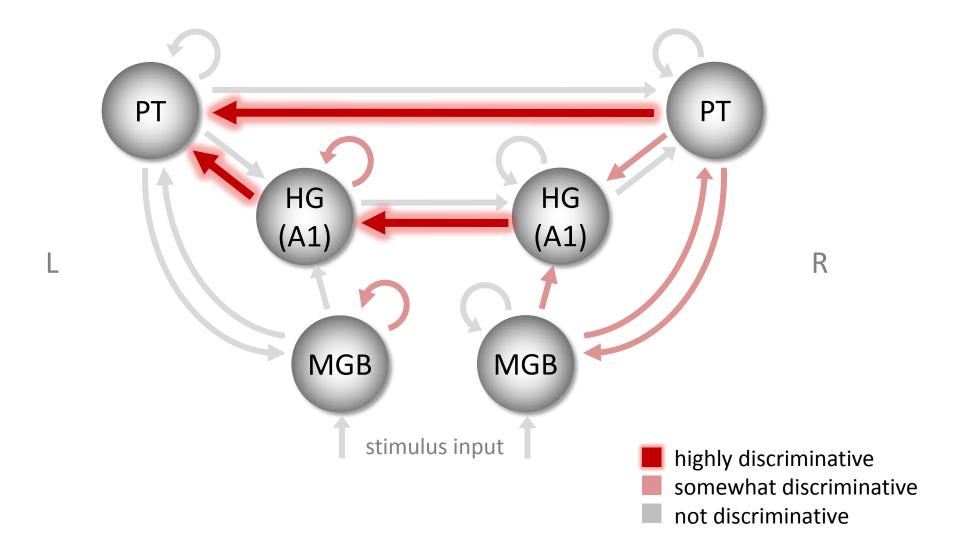




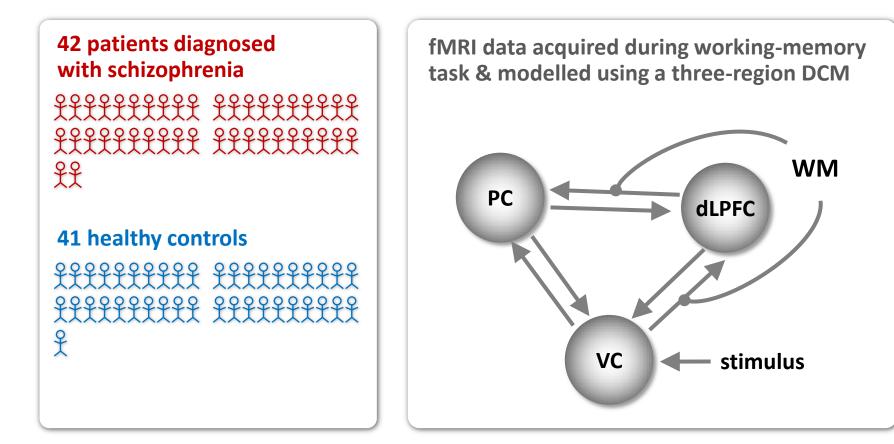
Model-based classification: interpretation



Model-based classification: interpretation



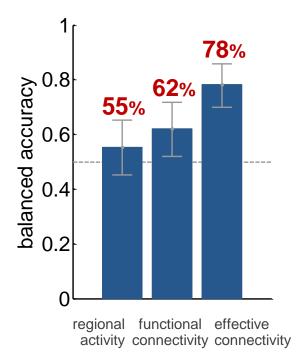
Model-based clustering



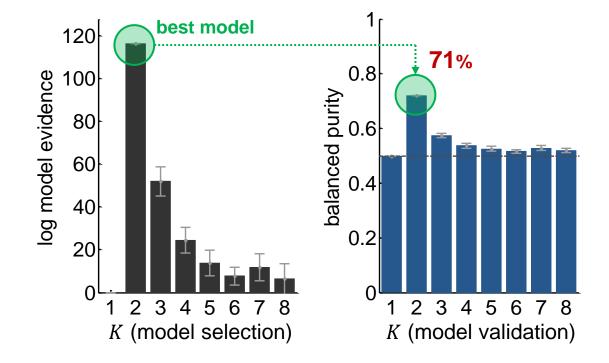
Deserno, Sterzer, Wüstenberg, Heinz, & Schlagenhauf (2012) J Neurosci

Model-based clustering

supervised learning: SVM classification

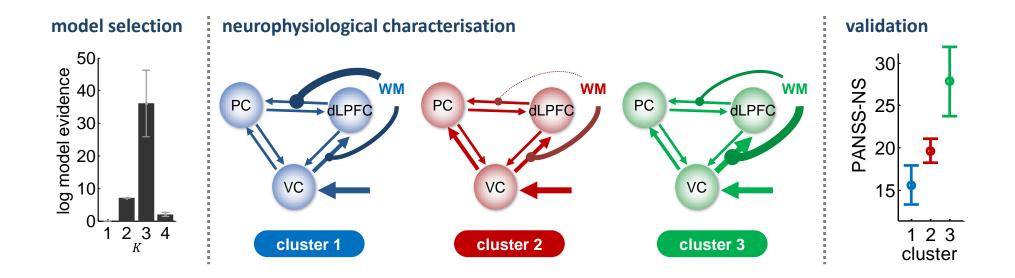


unsupervised learning: GMM clustering (using effective connectivity)



Brodersen, Deserno, Schlagenhauf, Penny, Lin, Gupta, Buhmann, Stephan (in preparation)

Model-based clustering



Brodersen, Deserno, Schlagenhauf, Penny, Lin, Gupta, Buhmann, Stephan (2014) NeuroImage: Clinical

Question 1 – What do the data tell us about hidden processes in the brain?

\Rightarrow compute the posterior

$$p(\theta|y,m) = \frac{p(y|\theta,m)p(\theta|m)}{p(y|m)}$$

Question 2 – Which model is best w.r.t. the observed fMRI data?

 \Rightarrow compute the model evidence

 $p(m|y) \propto p(y|m)p(m)$

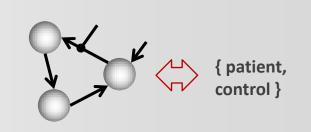
 $= \int p(y|\theta,m) p(\theta|m) d\theta$

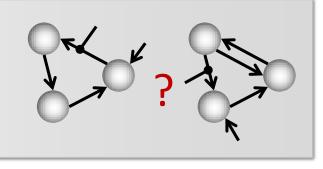
Question 3 – Which model is best w.r.t. an external criterion?

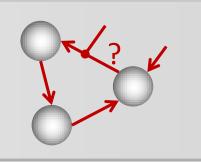
 \Rightarrow compute the classification accuracy

p(h(y) = x|y)

 $= \iiint p(h(y) = x | y, y_{\text{train}}, x_{\text{train}}) p(y) p(y_{\text{train}}) p(x_{\text{train}}) dy dy_{\text{train}} x_{\text{train}}$



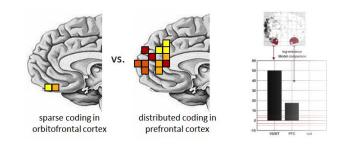




Summary

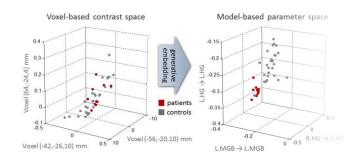
Classification

- to assess whether a cognitive state is linked to patterns of activity
- to visualize the spatial deployment of discriminative activity



Multivariate Bayes

- to evaluate competing anatomical hypotheses
- to evaluate competing coding hypotheses



Generative embedding

- to assess whether groups differ in terms of patterns of connectivity
- to generate mechanistic subgroup hypotheses